

Copper-Mediated Oxidative Chloro- and Bromodifluoromethylation of Aliphatic Alcohols

Wen-Juan Yuan, Jia-Yi Shou, and Feng-Ling Qing*

Cite This: <https://doi.org/10.1021/acs.orglett.5c04545>

Read Online

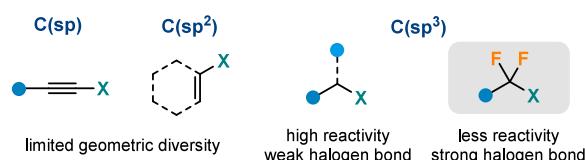
ACCESS |

Metrics & More

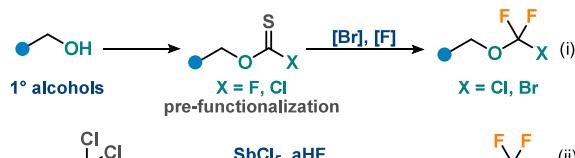
Article Recommendations

Supporting Information

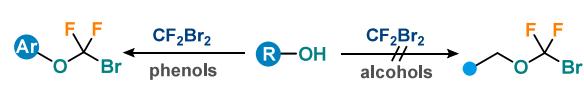
ABSTRACT: The synthesis of chloro- and bromodifluoromethyl alkyl ethers remained a fundamental challenge in synthetic chemistry. Herein we report the efficient and direct synthesis of chloro- and bromodifluoromethyl alkyl ethers through copper-mediated oxidative chloro- and bromodifluoromethylation of aliphatic alcohols with difluorocarbene-reagents. This difluorocarbene-involved oxidative coupling protocol exhibited broad functional group compatibility and was applicable to a wide range of primary and secondary alcohols.

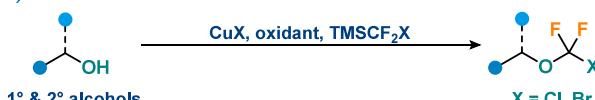


Halogen bonding (XB) is a well-established noncovalent interaction between the electropositive region on the halogen, the σ -hole, and a nucleophilic interaction partner.¹ This highly directional attraction has been exploited for a range of functional applications, such as crystal engineering,² catalysis,³ drug design and protein–ligand complexation.⁴ Traditional halogen bonding donors were typically confined to halogen atoms attached to sp^2 - or sp -hybridized carbon atoms, exhibiting limited geometric diversity (Scheme 1a). In comparison, alkyl halides with sp^3 carbon–halogen bonds were generally less utilized due to their high reactivity and weak strength of halogen bonding.⁵ Therefore, the strong electron-withdrawing groups (EWGs) were introduced as XB-tuning substituents to improve the XB strength. Fluorine was an ideal EWG, as it not only enhanced the halogen bonding strength but also reduced the reactivity by its shielding of the carbon atom. Consequently, halodifluoromethyl ($-\text{CF}_2\text{X}$) groups had emerged as promising halogen bonding donors (Scheme 1a).⁶


Recently, significant attention has been drawn to the synthesis and application of halodifluoromethyl-containing compounds, including halodifluoromethyl aryl ethers ($\text{Ar}-\text{O}-\text{CF}_2\text{X}$),^{4d,7} halodifluoroacetamides ($-\text{NHCO}-\text{CF}_2\text{X}$),⁸ and halodifluoroethyl ($-\text{CH}_2\text{CF}_2\text{X}$) groups.⁹ In contrast, the application of chloro- and bromodifluoromethyl alkyl ethers was limited due to the scarcity of efficient and general synthetic methods.¹⁰ Conventional approaches to chloro- and bromodifluoromethyl alkyl ethers relied on the desulfurization–halogenation of halothioformate derivatives (Scheme 1b, i).^{8c,11} Nevertheless, this strategy suffered from the use of the highly toxic and strongly oxidizing agent BrF_3 , or the expensive silver reagent AgSCF_3 . Alternatively, chlorodifluoromethyl alkyl ethers could also be obtained from the Swarts reaction of trichloromethyl alkyl ethers (Scheme 1b, ii).^{10a} However, this method was limited by harsh reaction conditions and narrow substrate scope, typically restricted to poly- or

Scheme 1. Application and Synthesis of Chloro- and Bromodifluoromethyl Alkyl Ethers


a) Structure of halogen bonding donors


b) Synthesis of halodifluoromethyl alkyl ethers

c) Reactions of hydroxy groups with CF_2Br_2

d) This work

Received: November 3, 2025

Revised: November 28, 2025

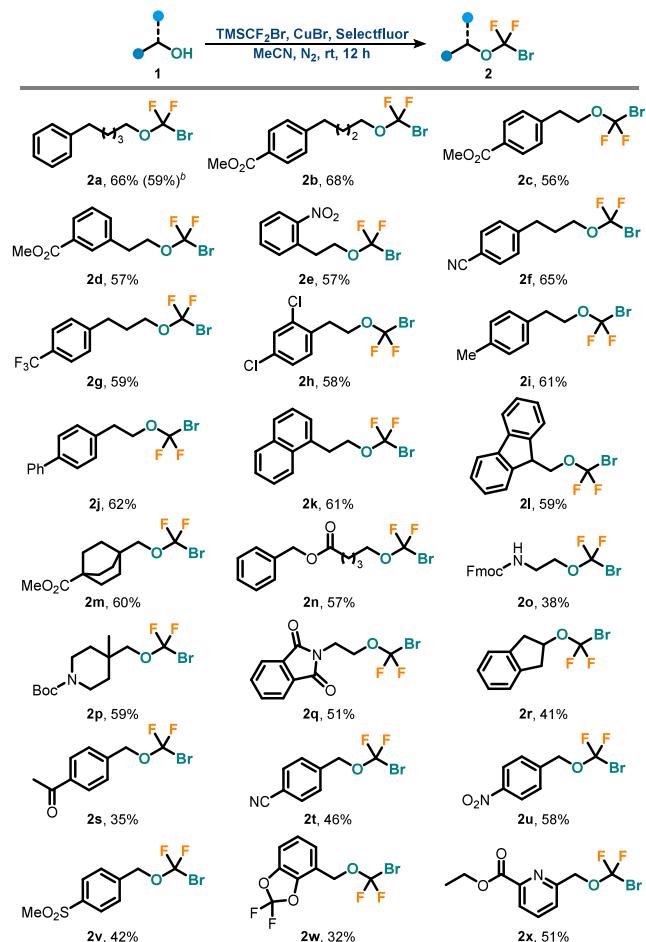
Accepted: December 10, 2025

perfluorinated starting materials. Notably, all of the existing methods for the synthesis of halodifluoromethyl alkyl ethers depended on the prefunctionalized alcohol derivatives as starting materials. Therefore, the development of a direct and efficient method for the synthesis of chloro- and bromodifluoromethyl alkyl ethers from commercially available alcohols is highly desirable. Although the direct one-step preparation of bromodifluoromethyl aryl ethers from phenols was well established using CF_2Br_2 under basic reaction conditions, the analogous reaction between aliphatic alcohols and CF_2Br_2 was completely hindered, probably due to the intrinsic inertness of aliphatic alcohols (Scheme 1c, for details, see Supporting Information). Recently, our group has developed a direct and efficient synthesis of chloro- and bromodifluoromethyl aryl ethers through the copper-mediated difluorocarbene-involved oxidative chloro- and bromodifluoromethylation of phenols.^{7d} Driven by our ongoing interest in oxidative fluoroalkylation¹² and extending this methodology to other nucleophiles,¹³ we propose a difluorocarbene-based three-component oxidative coupling of aliphatic alcohols, difluorocarbene precursors and CuX ($\text{X} = \text{Cl}, \text{Br}$). If successful, this protocol would provide a one-step route to synthesize chloro- and bromodifluoromethyl alkyl ethers under mild reaction conditions using commercially available starting materials (Scheme 1d).

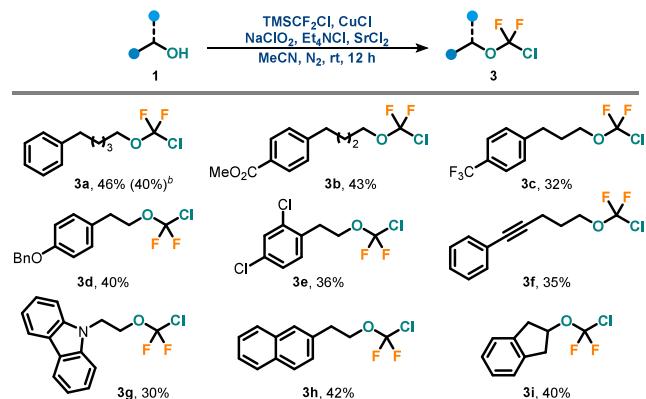
To assess the feasibility of our design, we commenced the investigation using 5-phenyl-1-pentanol (**1a**) as the model substrate for the reaction optimization. After the multidimensional evaluation of reaction parameters, we were pleased to observe the formation of bromodifluoromethyl alkyl ether **2a** in 53% yield using TMSCF_2Br as a difluorocarbene precursor, CuBr as copper salt, Selectfluor as oxidant, and MeCN as the solvent (Table 1, entry 1). Alternative oxidants such as PIDA and NaBrO_3 all resulted in slightly diminished yields (entries 2–3). Notably, when oxidant and CuBr were first mixed and

stirred for 5 min, followed by the addition of **1a** and then stirring another for 5 min, and finally the addition of TMSCF_2Br , these in-sequence additions of reagents resulted in a higher yield of **2a** (entry 4). Interestingly, the yield of **2a** was improved to 70% in the presence of the reduced amount of TMSCF_2Br (1.5 equiv) (entry 5). Furthermore, when the amounts of both TMSCF_2Br (1.5 equiv) and Selectfluor (1.75 equiv) were reduced, the yield of **2a** was still kept at 69% yield (entry 6). Encouraged by these results, we next explored the analogous oxidative chlorodifluoromethylation of **1a** using TMSCF_2Cl as a difluorocarbene precursor, and CuCl as copper salt in MeCN. The chlorodifluoromethylated product **3a** was formed in 26% yield (entry 7). The oxidant proved to be crucial for the efficiency of this three-component coupling reaction (entries 8–10). Fortunately, **3a** was formed in 41% yield when NaClO_2 was used as the oxidant (entry 10). The reduction of the amounts of both TMSCF_2Cl and NaClO_2 had a negligible impact on the yield of **3a** (entry 11). Further optimization of the reaction conditions showed that reducing the amount of CuCl and addition of Et_4NCl resulted in the formation of **3a** in 44% yield (entry 12). Finally, the yield of **3a** was improved to 51% in the case of the addition of a catalytic amount of SrCl_2 (entry 13).

Under the optimal reaction conditions (Table 1, entry 5), the substrate scope of the oxidative bromodifluoromethylation of aliphatic alcohol was extensively evaluated (Scheme 2). A wide range of aliphatic alcohols bearing ester, nitro, cyano, trifluoromethyl, chloride, and amide groups were well tolerated, as shown in the formation of **2b–q**. Alcohols derived from naphthalene and fluorene afforded the corresponding bromodifluoromethyl alkyl ethers (**2k–l**) in moderate yields. The formation of products **2p–q** demonstrated compatibility with the heterocyclic motifs. Secondary alcohol was also a viable substrate, delivering the desired product (**2r**) in moderate yield. Subsequent evaluation of benzyl alcohols revealed broad applicability. A variety of benzyl alcohols participated efficiently in this transformation, bearing functional groups such as ketone (**2s**), cyano (**2t**), nitro (**2u**), sulfone (**2v**), and pyridine (**2x**).


We next investigated the substrate scope of chlorodifluoromethylation (Scheme 3). A variety of primary alcohols were compatible with this oxidative protocol. Primary alcohols bearing electron-withdrawing and electron-donating groups, including ester, trifluoromethyl, ether, chloride, and alkyne, provided the desired products (**3b–f**) in moderate yields. Carbazole and naphthalene-derived alcohols performed well in the reaction (**3g–h**). Finally, the secondary alcohol also proved compatible, delivering the respective product (**3i**) in moderate yield.

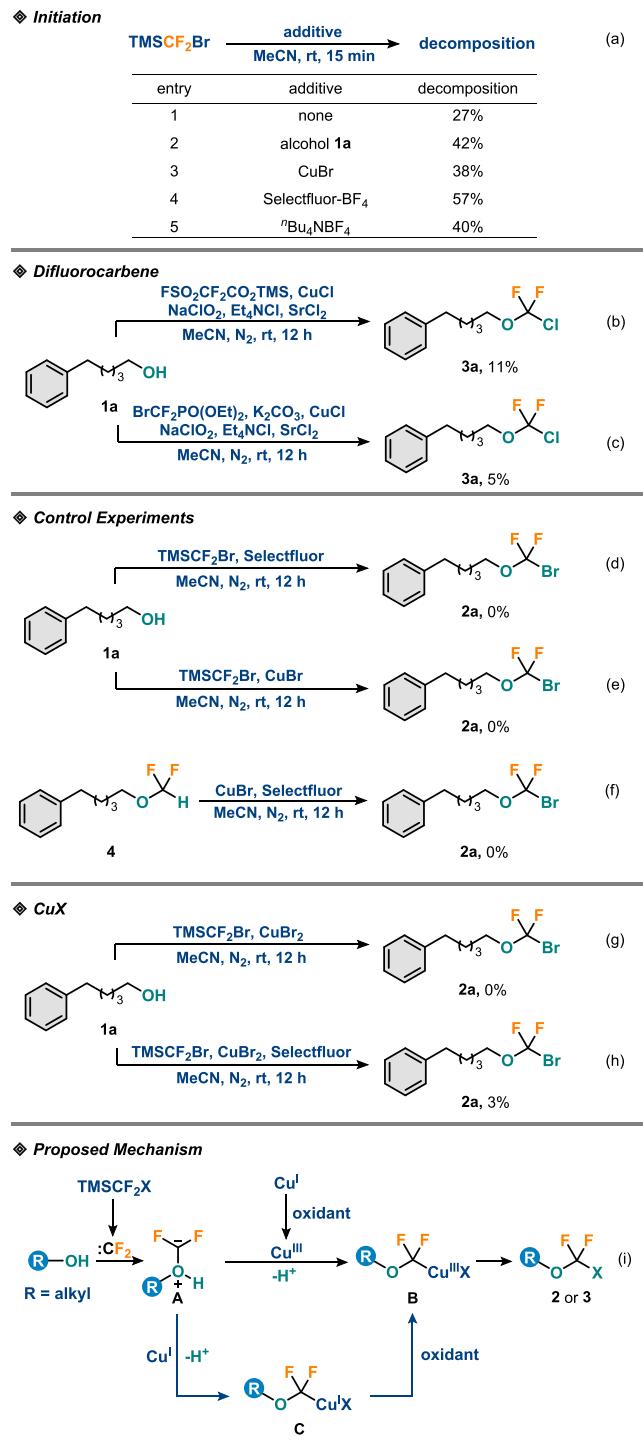
To elucidate the mechanism of this novel oxidative coupling reaction, a series of experiments were carried out. TMSCF_2Br underwent slow decomposition in MeCN, and the decomposition was accelerated in the presence of alcohol, CuBr , Selectfluor, or the BF_4^- anion (Scheme 4a). Consequently, this halodifluoromethylation reaction might be initiated by the activation of TMSCF_2Br with alcohol, CuBr , Selectfluor, or the BF_4^- anion. Furthermore, when $\text{FSO}_2\text{CF}_2\text{CO}_2\text{TMS}$ or $\text{BrCF}_2\text{PO}(\text{OEt})_2$ was employed as the difluorocarbene precursor under the oxidative chlorodifluoromethylation reaction conditions, target product **3a** was obtained in 11% or 5% yield, respectively (Scheme 4b, c). These results implied that the oxidative reaction proceeded through a difluorocarbene intermediate. Control experiments confirmed that both


Table 1. Optimization of Reaction Conditions^a

entry	TMSCF_2X (x equiv)	CuX	oxidant	yield (%) ^b	2a/3a	
					2a	3a
1	TMSCF_2Br (2.0)	CuBr	Selectfluor	53/–		
2	TMSCF_2Br (2.0)	CuBr	PIDA	42/–		
3	TMSCF_2Br (2.0)	CuBr	NaBrO_3	48/–		
4 ^c	TMSCF_2Br (2.0)	CuBr	Selectfluor	59/–		
5 ^c	TMSCF_2Br (1.5)	CuBr	Selectfluor	70/–		
6 ^{c,d}	TMSCF_2Br (1.5)	CuBr	Selectfluor	69/–		
7	TMSCF_2Cl (3.0)	CuCl	Selectfluor	–/26		
8	TMSCF_2Cl (3.0)	CuCl	PIDA	–/21		
9	TMSCF_2Cl (3.0)	CuCl	NaBrO_3	–/38		
10	TMSCF_2Cl (3.0)	CuCl	NaClO_2	–/41		
11 ^d	TMSCF_2Cl (1.5)	CuCl	NaClO_2	–/38		
12 ^{d,e}	TMSCF_2Cl (1.5)	CuCl	NaClO_2	–/44		
13 ^{d,e,f}	TMSCF_2Cl (1.5)	CuCl	NaClO_2	–/51		

^aReaction conditions: **1a** (0.1 mmol), TMSCF_2X (x equiv), CuX (5.0 equiv), oxidant (2.0 equiv), MeCN (0.1 M), under N_2 , room temperature, 12 h. ^bYields determined by ^{19}F NMR spectroscopy using PhCF_3 as an internal standard. ^c CuX (5.0 equiv), oxidant (2.0 equiv), MeCN (0.1 M), 5 min; then, **1a** (0.1 mmol), 5 min; then, TMSCF_2X (x equiv), 12 h. ^dOxidant (1.75 equiv). ^e CuCl (1.0 equiv), Et_4NCl (1.0 equiv). ^fAddition of SrCl_2 (0.25 equiv).

Scheme 2. Substrate Scope of Bromodifluoromethylation^a


^aReaction conditions: **1** (0.6 mmol), TMSCF₂Br (1.5 equiv), CuBr (5.0 equiv), Selectfluor (1.75 equiv), MeCN (0.1 M), under N₂, room temperature, 12 h. Isolated yields. ^b**1** (1 mmol).

Scheme 3. Substrate Scope of Chlorodifluoromethylation^a

^aReaction conditions: **1** (0.6 mmol), TMSCF₂Cl (1.5 equiv), CuCl (1.0 equiv), NaClO₂ (1.75 equiv), Et₄NCl (1.0 equiv), SrCl₂ (0.25 equiv), MeCN (0.1 M), under N₂, room temperature, 12 h. Isolated yields. ^b**1** (1 mmol).

the copper salt and the oxidant were essential for the formation of bromodifluoromethyl alkyl ether **2a** (Scheme 4d, e). Reaction of difluoromethyl ether **4** with CuBr and Selectfluor failed to give the desired product **2a**, which excluded **4** as a

Scheme 4. Mechanistic Investigation

possible intermediate for this oxidative bromodifluoromethylation process (Scheme 4f). In addition, the reaction of alcohol **1a** with TMSCF₂Br and CuBr₂ did not yield the target product **2a** (Scheme 4g). In contrast, treatment of alcohol **1a** with TMSCF₂Br, Selectfluor and CuBr₂ delivered product **2a** in 3% yield (Scheme 4g). These results indicated that the high-valent copper(III) species was a mediator in the formation of the ROCF₂–X bond.¹⁴

Based on the above results and related precedents,^{7d,15} a plausible reaction mechanism was proposed in Scheme 4i. Initially, TMSCF₂X (X = Cl, Br) underwent desilylation to

generate difluorocarbene. Subsequently, the reaction of alcohol and difluorocarbene gave intermediate A, which then underwent oxidative coupling with CuX (X = Cl, Br) in the presence of the oxidant to form a high-valent $\text{ArOCF}_2\text{Cu}^{\text{III}}\text{X}$ complex B through two possible pathways. One pathway was the formation of the Cu(III) species from reaction of a Cu(I) complex with the oxidant followed by transmetalation of A to Cu(III). The second pathway proceeded through the formation of copper(I) species C from the transmetalation of A to Cu(I) and then the oxidation of C with the oxidant. Finally, the reductive elimination of complex B afforded the desired chloro- and bromodifluoromethyl alkyl ethers.

In summary, we have developed a copper-mediated oxidative chloro- and bromodifluoromethylation of aliphatic alcohols with difluorocarbene reagent TMSCF_2X (X = Cl, Br). This strategy provided a novel and direct method for the synthesis of chloro- and bromodifluoromethyl alkyl ethers from commercially available alcohols in one-step, overcoming limitations of existing methods. Our laboratory is applying this strategy to other C-, O- and N-nucleophiles, as it provides a mild and efficient approach for the synthesis of halodifluoromethyl-containing compounds.

■ ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its [Supporting Information](#).

SI Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.orglett.Sc04545>.

Experimental procedures, characterization data, copies of ^1H , ^{19}F , and ^{13}C NMR spectra. ([PDF](#))

■ AUTHOR INFORMATION

Corresponding Author

Feng-Ling Qing – State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai 200032, China; orcid.org/0000-0002-7082-756X; Email: flq@mail.sioc.ac.cn

Authors

Wen-Juan Yuan – State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai 200032, China

Jia-Yi Shou – State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai 200032, China

Complete contact information is available at: <https://pubs.acs.org/10.1021/acs.orglett.Sc04545>

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The Strategic Priority Research Program of the Chinese Academy of Sciences (XDB0590000) and National Natural Science Foundation of China (22301306 and 22271298) are greatly acknowledged for funding this work.

■ REFERENCES

- (1) Cavallo, G.; Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.; Terraneo, G. The Halogen Bond. *Chem. Rev.* **2016**, *116*, 2478–2601.
- (2) For selected examples, see: (a) Takeuchi, T.; Minato, Y.; Takase, M.; Shinmori, H. Molecularly Imprinted Polymers with Halogen Bonding-Based Molecular Recognition Sites. *Tetrahedron Lett.* **2005**, *46*, 9025–9027. (b) Cheong, W. J.; Yang, S. H.; Ali, F. Molecular Imprinted Polymers for Separation Science: A Review of Reviews. *J. Sep. Sci.* **2013**, *36*, 609–628. (c) Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D. Halogen Bonding in Supramolecular Chemistry. *Chem. Rev.* **2015**, *115*, 7118–7195. (d) Mukherjee, A.; Tothadi, S.; Desiraju, G. R. Halogen Bonds in Crystal Engineering: Like Hydrogen Bonds yet Different. *Acc. Chem. Res.* **2014**, *47*, 2514–2524. (e) Mahmudov, K. T.; Kopylovich, M. N.; Guedes da Silva, M. F. C.; Pombeiro, A. J. L. Non-covalent interactions in the synthesis of coordination compounds: Recent advances. *Coordin. Chem. Rev.* **2017**, *345*, 54–72. (f) Yang, P.; Guo, J.; Lin, S.; Fu, Y.; Guo, W. Dissolution Inhibition via Intramolecular N...I Halogen Bond Enables High-Loading Zn-Organic Battery. *J. Am. Chem. Soc.* **2025**, *147*, 30820–30828. (g) Yuan, F.; Han, G.; Chen, C.; Fan, X.; Xiang, S.; Zhang, Z. Synergistic Assembly of Single-Crystal 2D Porphyrin-Based Organic Polymers via Dative B-N Bonds and Halogen Bonds. *Angew. Chem., Int. Ed.* **2025**, *64*, No. e202501875.
- (3) For selected examples, see: (a) Bulfield, D.; Huber, S. M. Halogen Bonding in Organic Synthesis and Organocatalysis. *Chem.—Eur. J.* **2016**, *22*, 14434–14450. (b) Sutar, R. L.; Huber, S. M. Catalysis of Organic Reactions through Halogen Bonding. *ACS Catal.* **2019**, *9*, 9622–9639. (c) Yang, H.; Wong, M. W. Application of Halogen Bonding to Organocatalysis: A Theoretical Perspective. *Molecules* **2020**, *25*, 1045.
- (4) For selected examples, see: (a) Kolář, M. H.; Tabarrini, O. Halogen Bonding in Nucleic Acid Complexes. *J. Med. Chem.* **2017**, *60*, 8681–8690. (b) Wilcken, R.; Zimmermann, M. O.; Lange, A.; Joerger, A. C.; Boeckler, F. M. Principles and applications of halogen bonding in medicinal chemistry and chemical biology. *J. Med. Chem.* **2013**, *56*, 1363–1388. (c) Zimmermann, M. O.; Lange, A.; Wilcken, R.; Cieslik, M. B.; Exner, T. E.; Joerger, A. C.; Koch, P.; Boeckler, F. M. Halogen enriched fragment libraries as chemical probes for harnessing halogen bonding in fragment-based lead discovery. *Future Med. Chem.* **2014**, *6*, 617–639. (d) Wylie, A. A.; Schoepfer, J.; Jahnke, W.; Cowan-Jacob, S. W.; Loo, A.; Furet, P.; Marzinzik, A. L.; Pelle, X.; Donovan, J.; Zhu, W.; Buonamici, S.; Hassan, A. Q.; Lombardo, F.; Iyer, V.; Palmer, M.; Berellini, G.; Dodd, S.; Thohan, S.; Bitter, H.; Branford, S.; Ross, D. M.; Hughes, T. P.; Petruzzelli, L.; Vanasse, K. G.; Warmuth, M.; Hofmann, F.; Keen, N. J.; Sellers, W. R. The Allosteric Inhibitor ABL001 Enables Dual Targeting of BCR-ABL1. *Nature* **2017**, *543*, 733–737.
- (5) Le Questel, J.-Y.; Laurence, C.; Graton, J. Halogen-bond interactions: a crystallographic basicity scale towards iodoorganic compounds. *CrystEngComm* **2013**, *15*, 3212–3221.
- (6) Vaas, S.; Zimmermann, M. O.; Schollmeyer, D.; Stahlecker, J.; Engelhardt, M. U.; Rheinganz, J.; Drotleff, B.; Olfert, M.; Lämmerhofer, M.; Kramer, M.; Stehle, T.; Boeckler, F. M. Principles and Applications of CF_2X Moieties as Unconventional Halogen Bond Donors in Medicinal Chemistry, Chemical Biology, and Drug Discovery. *J. Med. Chem.* **2023**, *66*, 10202–10225.
- (7) For selected examples, see: (a) Stogryn, E. L. Effect of Trifluoromethoxy, Chlorodifluoromethoxy, and Trifluoromethyl on the Antimalarial Activity of 5-Benzyl- and 5-Phenyl-2,4-diaminopyrimidines. *J. Med. Chem.* **1973**, *16*, 1399–1401. (b) Schoepfer, J.; Jahnke, W.; Berellini, G.; Buonamici, S.; Cotesta, S.; Cowan-Jacob, S.

W.; Dodd, S.; Drueckes, P.; Fabbro, D.; Gabriel, T.; Groell, J. M.; Grotfeld, R. M.; Hassan, A. Q.; Henry, C.; Iyer, V.; Jones, D.; Lombardo, F.; Loo, A.; Manley, P. W.; Pellé, X.; Rummel, G.; Salem, B.; Warmuth, M.; Wylie, A. A.; Zoller, T.; Marzinkik, A. L.; Furet, P. Discovery of Asciminib (ABL001), an Allosteric Inhibitor of the Tyrosine Kinase Activity of BCR-ABL1. *J. Med. Chem.* **2018**, *61*, 8120–8135. (c) Khotavivattana, T.; Verhoog, S.; Tredwell, M.; Calderwood, S.; Wheelhouse, K.; Collier, T. L.; Gouverneur, V. ¹⁸F-Labeling of Aryl-SCF₃, -OCF₃ and -OCHF₂ with [¹⁸F]Fluoride. *Angew. Chem., Int. Ed.* **2015**, *54*, 9991–9995. (d) Yuan, W.-J.; Tong, C.-L.; Xu, X.-H.; Qing, F.-L. Copper-Mediated Oxidative Chloro- and Bromodifluoromethylation of Phenols. *J. Am. Chem. Soc.* **2023**, *145*, 23899–23904. (e) Yang, Y.; Gao, H.; Sun, X.; Sun, Y.; Qiu, Y.; Weng, Q.; Rao, Y. Global PROTAC Toolbox for Degrading BCR-ABL Overcomes Drug-Resistant Mutants and Adverse Effects. *J. Med. Chem.* **2020**, *63*, 8567–8583.

(8) For selected examples, see: (a) Xu, J.; Cao, Y.; Zhang, J.; Yu, S.; Zou, Y.; Chai, X.; Wu, Q.; Zhang, D.; Jiang, Y.; Sun, Q. Design, synthesis and antifungal activities of novel 1,2,4-triazole derivatives. *Eur. J. Med. Chem.* **2011**, *46*, 3142–3148. (b) Truong, E. C.; Phuan, P. W.; Reggi, A. L.; Ferrera, L.; Galietta, L. J. V.; Levy, S. E.; Moises, A. C.; Cil, O.; Diez-Cecilia, E.; Lee, S.; Verkman, A. S.; Anderson, M. O. Substituted 2-Acylaminocycloalkylthiophene-3-carboxylic Acid Arylamides as Inhibitors of the Calcium-Activated Chloride Channel Transmembrane Protein 16A (TMEM16A). *J. Med. Chem.* **2017**, *60*, 4626–4635. (c) Vaas, S.; Zimmermann, M. O.; Klett, T.; Boeckler, F. M. Synthesis of Amino Acids Bearing Halodifluoromethyl Moieties and Their Application to p53-Derived Peptides Binding to Mdm2/Mdm4. *Drug Des. Devel. Ther.* **2023**, *17*, 1247–1274.

(9) Leclercq, K.; Matagne, A.; Provins, L.; Klitgaard, H.; Kaminski, R. M. Pharmacological Profile of the Novel Antiepileptic Drug Candidate Padsevonil: Characterization in Rodent Seizure and Epilepsy Models. *J. Pharmacol. Exp. Ther.* **2020**, *372*, 11–20.

(10) (a) Speers, L.; Szur, A. J.; Terrell, R. C.; Treadwell, J.; Ucciardi, T. U. General Anesthetics. 2. Halogenated Methyl Isopropyl Ethers. *J. Med. Chem.* **1971**, *14*, 593–595. (b) Koblin, D. D.; Laster, M. J.; Ionescu, P.; Gong, D.; Eger, E. I.; Halsey, M. J.; Hudlicky, T. Polyhalogenated Methyl Ethyl Ethers: Solubilities and Anesthetic Properties. *Anesth. Analg.* **1999**, *88*, 1161–1167.

(11) Liu, J.; Xiang, H.; Jiang, L.; Yi, W. Chemoselective Desulfurization-Fluorination/bromination of Carbono-fluoridothioates for the O-Trifluoromethylation and O-Bromodifluoromethylation of Alcohols. *Sci. China Chem.* **2021**, *64*, 1372–1379.

(12) (a) Chu, L.; Qing, F.-L. Oxidative Trifluoromethylation and Trifluoromethylthiolation Reactions Using (Trifluoromethyl)-trimethylsilane as a Nucleophilic CF₃ Source. *Acc. Chem. Res.* **2014**, *47*, 1513–1522. (b) Liu, J.-B.; Chen, C.; Chu, L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Silver-Mediated Oxidative Trifluoromethylation of Phenols: Direct Synthesis of Aryl Trifluoromethyl Ethers. *Angew. Chem., Int. Ed.* **2015**, *54*, 11839–11842. (c) Zhu, S.-Q.; Liu, Y.-L.; Li, H.; Xu, X.-H.; Qing, F.-L. Direct and Regioselective C-H Oxidative Difluoromethylation of Heteroarenes. *J. Am. Chem. Soc.* **2018**, *140*, 11613–11617.

(13) Zhou, Y.-S.; Yuan, W.-J.; Shou, J.-Y.; Chen, Z.-H.; Qing, F.-L. Oxidative Chloro- and Bromodifluoromethylation of Thiophenols. *Org. Lett.* **2025**, *27*, 10147–10151.

(14) (a) Ye, Y.; Sanford, M. S. Mild Copper-Mediated Fluorination of Aryl Stannanes and Aryl Trifluoroborates. *J. Am. Chem. Soc.* **2013**, *135*, 4648–4651. (b) Fier, P. S.; Luo, J.; Hartwig, J. F. Copper-Mediated Fluorination of Arylboronate Esters. Identification of a Copper(III) Fluoride Complex. *J. Am. Chem. Soc.* **2013**, *135*, 2552–2559.

(15) (a) Thompson, A. L. S.; Kabalka, G. W.; Akula, M. R.; Huffman, J. W. The Conversion of Phenols to the Corresponding Aryl Halides Under Mild Conditions. *Synthesis* **2005**, *2005*, 547–550. (b) Murphy, J. M.; Liao, X.; Hartwig, J. F. Meta Halogenation of 1,3-Disubstituted Arenes via Iridium-Catalyzed Arene Borylation. *J. Am. Chem. Soc.* **2007**, *129*, 15434–15435. (c) Schimler, S. D.; Sanford, M. S. Copper-Mediated Functionalization of Aryl Trifluoroborates.

Synlett **2016**, *27*, 2279–2284. (d) Xie, Q.; Ni, C.; Zhang, R.; Li, L.; Rong, J.; Hu, J. Efficient Difluoromethylation of Alcohols Using TMSCF₂Br as a Unique and Practical Difluorocarbene Reagent under Mild Conditions. *Angew. Chem., Int. Ed.* **2017**, *56*, 3206–3210.