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Direct regioselective C-3 halogenation of 
pyridines
 

Chao Li1,4, Xinyao Li    2,4, Jiaxing Li1,4, Zhixing Wang1, Dunhuang Ouyang1, 
Ning Jiao    1   & Song Song    1,3 

Pyridine derivatives are one of the most common heterocycles in chemistry. 
The 3-halopyridines are generally synthesized by indirect methods, 
including functional group conversion or a temporary dearomatization–
rearomatization process. Although the direct electrophilic halogenation 
of pyridines provides straightforward access to 3-halopyridines, it has 
been rarely reported owing to the poor π nucleophilicity of pyridines. Here 
we describe a general direct regioselective C-3 halogenation of pyridines 
promoted by an ether solvation effect. This radical process enables the 
regioselective reaction to occur at the C-3 position of pyridines, rather 
than other aromatic C–H bonds, and can be applied to the late-stage 
halogenation of complex molecules. The mechanistic studies show that the 
interaction between the pyridine substrate, ether solvent and haleniums 
plays a dominant role in the reactivity and regioselectivity.

As one of the most common heterocycles, pyridine derivatives are 
widely used in diverse fields1,2. The 3-halopyridines display distinct 
physiological, pharmacokinetic and pharmacological properties due 
to the characteristic halogen-atom effect3,4. These compounds not 
only form the core structures of approved drugs like nicergoline and 
roflumilast5,6, but also act as essential synthons for preparing 3-func-
tionalized pyridines via subsequent bond-forming reactions7,8 (Fig. 1a). 
Thus, developing synthetic methods for regioselective halogenation 
of pyridines is of high importance. Nevertheless, such methods have 
only been developed in recent years. In 2013, Hartwig and co-workers 
reported the direct C-2 fluorination of pyridines9. Recently, McNally10, 
Ritter11 and our group12 described the C-4 halogenation of pyridines. 
In spite of the reports on C-3 functionalization of pyridines13–19, those 
on the direct regioselective C-3 halogenation of pyridines are lacking.

Electrophilic aromatic halogenation is the most convenient 
method for synthesizing aryl halides20,21. Over the past 150 years, sub-
stantial advances, including new halogenating reagents22–25, catalytic 
systems26–32 and activation strategies33–38 have enabled halogenation of 
challenging aromatic substrates. However, owing to the inherent inert-
ness of pyridines39,40, these strategies have proven largely applicable 
only to pyridines bearing electron-donating groups25–27,30,35. Therefore, 

the halogenation of pyridines bearing electron-withdrawing groups 
(for example NO2, CF3 and CN) has not been achieved (Fig. 1b, left). On 
the other hand, the reported late-stage halogenation of complex mol-
ecules bearing both pyridine and other aromatics almost exclusively 
delivers halogenated products at the benzene ring25–27,30; the corre-
sponding regioselective halogenation occurring at the pyridine rings 
via a one-step strategy has rarely been reported (Fig. 1b, right). So far, 
3-halopyridines have generally been synthesized by indirect methods 
(Fig. 1c). For example, Knochel and co-workers realized C-3 iodination 
of pyridines through preinstalled directing groups at the C-4 position41. 
The Hartwig group reported the preparation of 3-halopyridines via 
iridium-catalysed borylation followed by ipso halogenation with cop-
per salts42. The decarboxylative halogenation of pyridine carboxylic 
acids was realized by the MacMillan group43. Recently, a temporary 
dearomatization–rearomatization strategy has been employed for 
the synthesis of 3-halopyridines. In 2022, McNally and co-workers 
reported C-3 halogenation of pyridines44 through a Zincke imine 
intermediate45–47. At the same time, the Studer group developed C-3 
halogenation of pyridines48 via an oxazino pyridine intermediate49–52. 
Despite these advances, regioselective and direct C-3 halogenation 
of pyridines, which is the most straightforward and step-economical 
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the reaction conditions, we were delighted to find that dioxane could 
promote C-3 bromination of pyridines efficiently in the presence of 
N-bromosuccinimide (NBS) without any other activator. Other ether 
solvents such as tetrahydrofuran (THF) and methyl tert-butyl ether 
(MTBE) were also suitable for promoting the meta bromination with 
relatively low yields. Meanwhile, no desired product 1 was detected 
in other solvents (see Supplementary Table 2 and Supplementary 
Scheme 1 for details). Under the optimized conditions, the bromina-
tion of various pyridines was explored to test the generality of this 
protocol (Fig. 2a). The pyridines bearing electron-withdrawing substitu-
ents including ester, cyano, nitro, trifluoromethyl, aldehyde, ketone, 
amide, sulfonamide or halogen at the meta position were halogenated 
to the corresponding products 1–12 in moderate to good yields. In 
addition, benzyl-, alkyl- or phenoxy-substituted pyridines also under-
went bromination to afford products 13–15 in moderate yields. To 
our delight, the 2,3’-bipyridyl could be mono-brominated with high 
selectivity at the less sterically hindered pyridine in this reaction system 

route to 3-halopyridines, needs urgent development. Following our 
continuous development of halogenation strategies53, in this Article we 
report a highly regioselective and direct C-3 halogenation of pyridines 
promoted by an ether solvent (Fig. 1d). We note that pyridines bearing 
electron-withdrawing groups were halogenated with high efficiency. 
The simple conditions and good functional group tolerance of this 
protocol allow it to be successfully applied to the late-stage synthesis 
and modification of bioactive molecules.

Results and discussion
Reaction development and substrate scope of C-3 
halogenation of pyridines
Initially, we attempted to achieve C-3 halogenation of pyridine through 
a Lewis acid activation strategy54. Surprisingly, decreasing the Lewis 
acid loading enhanced the reaction efficiency, and the highest yield 
of product was obtained without the Lewis acid additive in dioxane 
(see Supplementary Table 1 for details). After careful screening of 
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(to give 16). Furthermore, meta-aryl substituted pyridines furnished 
the halogenation with high efficiency and good regioselectivity to 
afford 17–26 in moderate to good yields. Moreover, 4-substituted 
pyridines were converted into the corresponding di-bromination prod-
ucts 27–31 in moderate yields. The disubstituted pyridines showed 
good reactivity under optimized conditions (to give 27 and 32–35). 
However, the unsubstituted pyridine was dibrominated in only 15% 
yield (to give 12), along with significant substrate degradation. The 
ortho-substituted pyridines bearing an electron-deficient benzene 
ring, ester or ketone or an electron-donating amino group could also 
be brominated to deliver mono- and di-substituted products 36–42. 
In addition, this method could be extended to the halogenation of 
isoquinoline, quinoline, pyrimidine and benzoquinoline scaffolds 
(to give 43–51). This system was also successfully applied to the chlo-
rination and iodination of various pyridines, albeit with slightly lower 
yields (see Supplementary Tables 3 and 4 for details). The iodination of 
3-substituted pyridines bearing an ester, a ketone, an aryl or a heteroaryl 
group went smoothly to afford 52–55 with dimethyl ether (DME) as the 
solvent. We note that catalytic benzyl methyl sulfide could improve the 
chlorination with MTBE as the solvent. A series of pyridines bearing an 
ester, a ketone, an aryl, a heteroaryl, a sulfamide or an amide group was 
chlorinated with moderate yields (to give 56–63).

Halogen atoms significantly modulate the properties of drug 
compounds3,4. Consequently, late-stage halogenation provides a reli-
able strategy for rapid modification of pharmaceuticals and materi-
als, circumventing de novo synthesis5,6. Therefore, we applied our 
method to achieve late-stage halogenation of bioactive molecules 
(Fig. 2b). Borneol nicotinate, menthol nicotinate and nicoboxil, bear-
ing electron-withdrawing ester groups, underwent halogenation 
smoothly with high efficiency (to give 64, 66 and 68). Nikethamide 
was converted into the corresponding halogenated product 70 in 
73% yield. A precursor of mestinon bearing an amide ester group was 
brominated in 70% yield (to give 73). The bromination of etofibrate 
and nicorandil delivered 76 and 78 with the tolerance of the ester, 

ether or nitro group. The two pyridine rings in metapyron were both 
brominated under the modified conditions tolerating the ketone group 
(to give 79). Quinoxyfen with a quinoline scaffold was also tolerated 
to afford 80 in 67% yield. The bromination of vismodegib delivered 
dibrominated product 81 with excellent selectivity on the pyridine 
ring. The photoelectric material TmPyPb was also compatible with the 
present reaction system, affording the corresponding product 82 in 
60% yield. In addition to bromination, the late-stage chlorination and 
iodination of the drugs also went smoothly to afford the halogenated 
products 65, 67, 69, 71, 72, 74, 75 and 77 with relatively lower yields 
under the present conditions.

Comparison of methods
We compared our method with established bromination methods 
for late-stage functionalization of pharmaceuticals containing pyri-
dine and benzene rings, which are the two most prevalent arenes 
in drug design (Fig. 3; see Supplementary Section 4 for details). To 
our delight, our method showed largely improved efficiency com-
pared to a Lewis acid-catalysed system (AuCl3 (ref. 28)), a Brønsted 
acid-catalysed system (m-nitrobenzenesulfonic acid (m-NBSA)/1,1,1,3,
3,3-hexafluoroisopropanol (HFIP) (ref. 26), TfOH (ref. 33)) and a Lewis 
base-catalysed system (triptycenyl sulfide (Trip-SMe) (ref. 29)). We note 
that good regioselectivity on the C-3 position of pyridine was observed 
in our bromination system, while the bromination under m-NBSA/
HFIP, TfOH and Trip-SMe conditions occurred on the benzene ring or 
on both the benzene and pyridine rings (Fig. 3). These experiments 
revealed that our present NBS/ether system showed high reactivity and 
different regioselectivity compared to the above-mentioned methods.

Synthetic applications
3-Bromopyridine 1 can be easily converted into other value-added 
motifs. For example, brominated pyridine 1 underwent Suzuki–Miyaura 
reaction to deliver alkyl pyridine 83. In addition, alkenyl and alkynyl 
pyridines 84 and 85 were obtained from 3-bromopyridine 1 via Heck 
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or Sonogashira reaction. Furthermore, the reaction between 1 and 
diphenylphosphine oxide delivered methyl 5-(diphenylphosphoryl)
nicotinate 86 in good yield (Fig. 4a). A scale-up experiment was con-
ducted to afford 3-bromopyridine 1 in 71% yield without column chro-
matography, demonstrating the good operability of this halogenation 
(Fig. 4b). The C-3 arylation of pyridine S1 to 87 was achieved in 61% yield 
via halogenation followed by a Suzuki–Miyaura reaction in a one-pot 
process (Fig. 4c), showing a convenient protocol for pyridine function-
alization. With this bromination reaction as the key step, nicergoline 
90 was conveniently prepared through the late-stage bromination of 
nicergoline precursor 89 (Fig. 4d). Compared to the reported method55, 
our strategy exhibits exceptional advantages in raw material cost sav-
ing (approximately US$0.6 g−1 for nicotinoyl chloride hydrochloride 
versus approximately US$47.4 g−1 for 5-bromonicotinoyl chloride).

Mechanistic studies
Control experiments were systematically conducted to elucidate the 
reaction mechanism (Fig. 5a). No bromination was observed when NBS 
was replaced with molecular bromine (Br2), indicating that Br2 was 

not the active source of bromine (equation (1) in Fig. 5a). No desired 
product 1 was detected when NaBr or tetrabutylammonium bromide 
(TBAB) was used as the bromo-source, which ruled out the nucleophilic 
substitution pathway (equation (2) in Fig. 5a). The bromination of S1 
was restrained by (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO), 
revealing this bromination is likely to undergo a radical process (equa-
tion (3) in Fig. 5a). The yield of 1 was unaffected when the reaction was 
performed in the dark, ruling out the influence of light (equation (4) in 
Fig. 5a). When 1,1-diphenylethylene was added to the standard condi-
tions, brominated diphenylethylene 91 was observed in 75% yield with 
trace amount of 1, indicating the possibility of a radical mechanism 
(equation (5) in Fig. 5a). However, when 1,1-diphenylethylene was mixed 
with NBS in dioxane, no 91 was detected (equation (6) in Fig. 5a). These 
experiments showed that pyridine was crucial for the generation of 
bromo-radicals (equations (5 and 6) in Fig. 5a). On changing pyridine 
to methyl benzoate 92, no brominated product was detected under 
standard conditions (equation (7) in Fig. 5a). Moreover, protonated 
pyridine 93 could not be brominated in the presence of NBS and dioxane 
(equation (8) in Fig. 5a). 2,6-Disubstituted pyridine 94 with significant 

b

c

N

MeO2C

83, 78%

N

MeO2C

85, 65%

N

MeO2C

84, 56%

Ph

CO2MePd(OAc)2, TBAC 
amine

DMAc, 100 °C 12 h, N2

[Pd(allyl)Cl]2/PPh3
pyrrolidine

BMIM[BF4], 100 °C

d

CO2Me

Ph

H

N

Me

NMe
OMe

N

Cl

O

Dioxane, 100 °C, 0.5 h

B(OH)2

a

OH

H

N

Me

NMe
OMe

O

O

N

NBS (2 equiv.)
Dioxane, 80 °C, 0.5 h

NBS (2 equiv.)

NiCl2(dppp)
K3PO4

Dioxane, 100 °C 24 h, N2
N

MeO2C P

86, 75%

Ph

O

Ph

Pd(OAc)2/PCy3
K3PO4

PhMe:H2O
100 °C, 16 h, N2

Ph2P(O)H

Dioxane, 100 °C, 0.5 h

•HCl

Et3N, DCM

N

Cl

O

Br

(~US$47.4 g−1)

(~US$0.6 g−1)

N

MeO2C

S1

N

MeO2C

87, 61%

H

N

Me

NMe
OMe

O

O

N

Br

1

N

MeO2C Br

S1, 15 mmol scale 1, 2.29 g, 71%

N

MeO2C Br NBS (2 equiv.) Recrystallization

Then concentration
4-Tolylboronic acid

Pd(PPh3)4, Na2CO3
THF/H2O, 80 °C, 16 h, N2 N

MeO2C

Me

89, 83%88 Nicergoline, 90, 46%

Fig. 4 | Applications of 3-halopyridines. a, 3-Bromopyridine 1 can be easily 
converted into other 3-functionalized pyridine derivatives. b, The scale-up 
experiment was conducted without column chromatography. c, The one-pot C-3 
arylation of pyridine was achieved via the developed halogenation method. d, 
The late-stage bromination served as the key step in the synthesis of nicergoline. 
The grey dotted line and grey structure represent two different strategies 

for synthesizing nicergoline, highlighting the advantages of our method. Ac, 
acetyl; PCy3, tricyclohexyl phosphine; TBAC, tetrabutyl ammonium chloride; 
DMAc, N,N-dimethylacetamide; BMIM[BF4], 1-butyl-3-methylimidazolium 
tetrafluoroborate; dppp, 1,3-bis(diphenylphosphino)propane; THF, 
tetrahydrofuran; DCM, dichloromethane.

http://www.nature.com/natsynth


Nature Synthesis

Article https://doi.org/10.1038/s44160-025-00915-3

steric hindrance at positions 2 and 6 also could not be brominated 
(equation (9) in Fig. 5a). These results imply that the nitrogen atom on 
the pyridine ring could interact with NBS to enable the bromination 
(equations (7–9) in Fig. 5a). We note that, when isoquinoline S49 par-
ticipated in this reaction in the presence of NBS, unexpected amination 

product 95 was obtained (equation (10) in Fig. 5a), revealing that the 
succinimide was likely to participate in the halogenation process.

To further prove the interaction between pyridine and NBS, 13C 
NMR spectroscopy studies were conducted (Fig. 5b). The 13C NMR 
spectroscopy signal of the carbonyl group in NBS shifted to a lower 
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field in the presence of pyridine S1, indicating that the electron density 
of the carbonyl group decreased. In addition, no significant differ-
ence was observed in the 13C NMR spectroscopy signal of the carbonyl 
group in succinimide. These experiments confirmed the interaction 
between pyridine and the bromine atom of NBS. NBS showed a sub-
stantial change to a lower field in the presence of dioxane (Fig. 5c). 
This result is similar to that of a typical Lewis base, Ph3PO (see Sup-
plementary Scheme 18 for details), suggesting that the ether solvent 
functioned as a potential Lewis base. Furthermore, when pyridine 
and N-iodosuccinimide (NIS) in DME were stirred for 1 h, the forma-
tion of Py2–I+ (py, pyridyl) was detected by high-resolution mass 
spectrometry-electrospray ionization (HRMS-ESI) analysis (see Sup-
plementary Scheme 20 for details).

Density functional theory calculations were then used to fur-
ther understand the mechanism of C-3 halogenation of pyridines 
in dioxane (Fig. 6a–c). First, the treatment of halogenating agents 
such as NBS under heat conditions can generate the unstable Br+ 
and Br∙ species21,56,57. However, Br+ species can be significantly sta-
bilized by pyridine and dioxane with stabilization free energies of 
112.1–152.5 kcal mol−1 and Br∙ species can also have interactions with 
pyridine and dioxane (Fig. 6a, left). Especially in dioxane solution, the 
conversion of NBS into the succinimide radical and Br∙ species required 
a lower energy (48.6 versus 55.7 kcal mol−1). Further bromine radical 
transfer provided a more stable pyridine bromine radical58 (Fig. 6a, 
right). Then the regioselective C-3 bromination pathway of pyridine 
in dioxane as the model reaction was explored (Fig. 6b). Pyridine and 
NBS–dioxane form a complex Py–NBS (A), which can further convert 
into Py2–Br+ (B) together with trace HBr or Py–Br∙ (D) and the succin-
imide radical. This pair of radicals can undergo a radical-coupling reac-
tion through the barrierless transition state TS0 (see Supplementary 
Scheme 22 for details) to deliver Py–Br–NS (C) with a relatively lower 
free energy of 13.0 kcal mol−1. The formation of C was confirmed by 
HRMS-ESI analysis59 (see Supplementary Scheme 21 for details). For 
the NIS system, Py2-I+ was more stable than Py2–Br+, consistent with the 
experimental observation from HRMS analysis. Once C was formed, the 
stabilized Py–Br∙ (D) tended to attack the C-3 position of C through tran-
sition state TS1 with an activation free energy of 29.2 kcal mol−1, provid-
ing the intermediate E. With the release of the Br∙ species via TS2 with 
an activation free energy of 16.5 kcal mol−1, 3-Br(H)Py (F) was obtained 
as a stable species. The subsequent deprotonation step proceeds 
through two distinct pathways. In the presence of trace bromide ions, 
3-H abstraction occurs via transition state TS3 (ΔG‡ = 18.0 kcal mol−1), 
generating intermediate G. Subsequent succinimide departure pro-
ceeds with an extremely low barrier (TS4, ΔG‡ = 1.7 kcal mol−1) to afford 
the final product 1. Alternatively, the intramolecular deprotonation by 
the carbonyl group of the succinimide moiety through TS5 requires 
an activation free energy of 30.7 kcal mol−1, followed by H-migration 
to the 5-position, yielding intermediate H. Succinimide elimination 
then occurs via TS6 (ΔG‡ = 24.7 kcal mol−1), releasing the final product 
1 along with free succinimide.

Finally, as the frontier molecular orbital (FMO) modulation strat-
egy, including lowest unoccupied molecular orbital (LUMO), highest 
occupied molecular orbital (HOMO) or singly occupied molecular 
orbital (SOMO) activation has been well realized in the organocatalytic 
field, the energy of the frontier molecular orbitals was calculated to 
explain the distinct reactivity of the pyridine–Br species and bromine 
radicals (Fig. 6c). The HOMOs of Py, Py–NBS (A) and Py–Br+ species 
were found at −8.7 to −12.1 eV and the SOMO energy level of the bromine 
radical was found at −5.3 eV. The relatively smaller energy difference 
(1.8 eV) between the HOMO of Py–Br–NS (C) and the SOMO of the 
bromine radical explains the outstanding reactivity observed for C.

Conclusions
In summary, we have reported a direct regioselective C-3 halogenation 
of pyridines. The commercially accessible reagents, broad functional 

group tolerance, operational simplicity and excellent selectivity of 
this reaction allow it to be successfully applied to the synthesis of 
3-functionalized pyridines, late-stage functionalization of bioac-
tive molecules and the concise syntheses of pharmaceuticals. The 
mechanistic studies showed that a halo-radical was generated under 
the reaction conditions and the interaction between pyridine and 
ether solvent with haleniums played a dominant role in the reactivity 
and regioselectivity.

Methods
Typical procedure for C-3 bromination of pyridines
A pyridine substrate (0.50 mmol, if solid) and NBS (1.0 mmol) were 
added to a sealed tube with a magnetic stir bar at room temperature. 
Then dioxane (2 ml) and a pyridine substrate (0.50 mmol, if liquid) 
were added in sequence and then the mixture was stirred at 600 r.p.m. 
at 100 °C for 0.5–12 h. After cooling down to room temperature, the 
solvent was removed by rotary evaporation. The residue was purified 
by chromatography on a silica gel (petroleum ether/ethyl acetate) to 
afford the brominated product. For complete experimental details, 
including procedures and full characterization (1H and 13C NMR 
spectroscopy, HRMS spectrometry) of all new compounds, see the 
Supplementary Information.

Data availability
The data that support the findings of this study are available in the 
Article and its Supplementary Information. Source data are provided 
with this paper.
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