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ABSTRACT: Uranium extraction from seawater (UES) is crucial
for reducing nuclear fuel supply pressure and promoting the
comprehensive utilization of marine resources. The successful
implementations of UES engineering critically rely on the highly
efficient sorbent materials with exceptional performance in
binding uranyl ions. Herein, a universal and facile “organic ion
building blocks self-assembly” strategy is established to realize a
first class of carboxyl functionalized ionic single crystals, named
BPTC-BPY-R (R = 1-6, the R corresponds to alkyl chain length
modifier, e.g., R = 1 corresponds to iodomethane derivatives, R
= 2 corresponds to bromoethane derivatives, etc.), derived from
rationally designed viologen-derivatives with different alkyl chain
lengths and polycarboxylic acid. This strategy effectively exploits
the organic ion building block properties to achieve U(VI)
adsorption based on the synergistic effects of anions (ligand
interaction) and cations (electrostatic interaction). Notably,
attributed to the special crystal stacking mode and higher
specific surface area, the resulting BPTC-BPY-3 not only
achieves ultrahigh selectivity for U(VI) adsorption with a partition coefficient of 3. 998 x 10° mL/g, but also possesses an
ultrafast U(VI) adsorption kinetics and an uptake capacity of 686.8 mg/g within 2 min. More importantly, it realizes a U(VI)
uptake capacity of 7.41 mg/g from natural seawater in 20 days. The designed material with ultra-selectivity, high capacity,
ultrafast kinetics, and good recyclability exhibits a great promise for efficient U(VI) extraction from seawater.
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distributed in seawater, the reserves are at least 1000 times greater
than those found on all known landmasses [3]. However, UES
Uranium extraction from seawater (UES) has gained recognition as presents significant long-term engineering challenges due to the

one of the seven major chemical separations with the potential to predominant form of uranium in seawater, [(UO,(CO;);]*, which

lutionize th 1d [1, 2]. With 4.5 billion t £UVI) widel is present in an ultra-low concentration of approximately 3.3 ppb
revolutionize the world {1, 2]. Wi fon tons of U(VI) widely [4, 5]. Additionally, the high salt concentration and prolonged

exposure to seawater pose further complications, as other ions in
the seawater can greatly impact the materials used for UES [6].
Consequently, the development of efficient and cost-effective
materials for extracting uranium from seawater becomes
BdAddress  correspondence to  Jia Chen, jiachen@licp.cas.cn; imperative [7-10].
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is crucial in this process, which is achieved by considering the
coordination environment of U(VI). Hitherto, researchers have
explored various U(VI) adsorbents, encompassing inorganic
materials [11-13], polymers [14, 15], biomaterials [16], and
nanomaterials [17-19]. To facilitate practical implementation in
seawater, macroscopic adsorbents, such as fibers [20, 21], resins
[22], and hydrogels [23-25], have been specifically designed.
However, these adsorbents are typically electrically neutral and rely
on the functional groups (e.g., amidoxime groups, sulfonate groups,
and carboxyl groups) therein for coordination [26], and their
selectivity for U(VI) is limited, which is further exacerbated by
interference from vanadyl ions [27, 28]. A further critical challenge
lies in the adsorption capacity of existing materials, which often
underutilize interfacial sites, resulting in low U(VI) uptake and slow
adsorption rates [29, 30]. Studies have demonstrated that
introducing charged functional groups into the organic ligand of
the adsorbent can significantly enhance selectivity and adsorption
rates [31-34]. The studies have inspired our interest to
simultaneously introduce organic anion-cation building blocks and
multiple adsorption sites on the materials [35-38], aiming to
efficiently improve the selectivity and adsorption capacity through
the synergistic effect of combining electrostatic interactions and
coordination interactions.

Herein, we firstly put forward a universal and facile strategy for
synthesizing a novel class of carboxyl ionic single crystals with
unique network structures, named BPTC-BPY-R (R = 1-6, the R
corresponds to alkyl chain length modifier, e.g., R = 1 corresponds
to iodomethane derivatives, R = 2 corresponds to bromoethane
derivatives, etc.), which were assembled by organic cation building
block (dialkyl bipyridine dihalide, BPY-R) and organic anion
building block (biphenyl-3,3’,5,5-tetracarboxylic acid, H,BPTC).
Notably, by modulating the alkyl chain length in BPY-R (viologen-
derived), these materials were successfully formed at room
temperature through electrostatic interactions. In this case, the weak
acidity of the carboxyl group in HBPTC was skillfully improved by
the addition of NH;H,O. The exceptional U(VI) adsorption
properties of the material were further confirmed through the
systematic variation of experimental parameters, including
adsorbent dosage, pH, temperature, as well as analysis of adsorption
isotherms, kinetics, thermodynamics, selective adsorption, and
regeneration experiments for U(VI). We also examined the
adsorption capacity of the material in natural seawater and verified
the synergistic adsorption mechanisms by integrating theoretical
calculations with experimental investigations.

2 Results and discussion

2.1 Design, synthesis, and characterizations of BPTC-BPY

Firstly, a series of network ionic single crystal materials, BPTC-BPY-
R (R = 1-6), were facilely obtained by the ionic self-assembly of
H,BPTC and BPY-R at room temperature, as depicted in Fig. 1(a).
The exact structures of these single crystals were analyzed by single-
crystal X-ray diffraction (SC-XRD) (Tables S1-S6 in the Electronic
Supplementary Material (ESM)). SC-XRD analysis indicates that
the ionic single crystals BPTC-BPY-R (R = 1-6) in this work have
an organic anion-cation building block ratio of 1:1 (as shown by the
asymmetric unit of BPTC-BPY-R in Fig. S1 in the ESM), where
each ionic single crystal was formed by multiple ionic bonds with a
bond length of 2.74-3.81 A (Fig. 1(b)), which in turn effectively
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formed a unique three-dimensional structure. While these ionic
single crystals exhibit a variety of typical stacking modes, including
inserted-stacking, mixed-stacking, and segregated-stacking, as
shown in Fig. S2 in the ESM. In the inserted-stacking mode, the
organic anion-cation building blocks alternately stack along their
face-to-face stacking directions, represented by BPTC-BPY-1 and
BPTC-BPY-2. In the mixed-stacking mode, some organic ion
building blocks can be stacked separately in adjacent layers through
the separation stacking mode, and additional organic ion building
blocks can be inserted into the separation stacking layer through
electrostatic action under the separation stacking layer, represented
by BPTC-BPY-4. Meanwhile, in a segregated-stacking mode,
organic anion-cation building blocks are stacked in adjacent layers,
respectively, and the layers are combined by electrostatic
interaction, typical examples being BPTC-BPY-3, BPTC-BPY-5,
and BPTC-BPY-6. Different stacking modes are expected to
influence the physicochemical properties of BPTC-BPY-R and their
corresponding U(VI) adsorption performance.

Upon comparing the experimental and simulated powder XRD
(PXRD) patterns, a remarkable concurrence can be observed. For
BPTC-BPY-2, BPTC-BPY-3, and BPTC-BPY-4, the experimental
PXRD patterns exhibit a striking resemblance to the simulated
PXRD patterns, showcasing diffraction peaks of comparable
intensities at identical positions. This congruence strongly suggests
that the samples possess excellent crystallinity and phase purity.
Unfortunately, BPTC-BPY-1, BPTC-BPY-5, and BPTC-BPY-6 are
prone to weathering due to the unstable exposure of single crystals
in air, so the experimental PXRD patterns cannot completely
overlap with the simulated PXRD patterns, but do not affect the
performance of single crystals and adsorption experiments, as
depicted in Figs. 2(a)-2(f). The chemical stability of BPTC-BPY-R
was evaluated with BPTC-BPY-4 as a representative. After exposure
to various chemical environments at room temperature for 24 h,
BPTC-BPY-4 maintained its crystal structure in various organic
solvents, which means excellent chemical stability (Fig. S3 in the
ESM). When dispersed in aqueous solutions with different pH
ranges, the intensity of the PXRD pattern of BPTC-BPY-4
remained relatively stable from pH = 3-7. Therefore, this material
has acid resistance in a certain range. The morphology of BPTC-
BPY-R was subsequently characterized by optical microscopy, as
shown in Figs. 2(g)-2(). The synthesized BPTC-BPY-R appeared
as bulk or needle-shaped transparent crystals, and the photographs
clearly illustrate its angular shape and dimensions ranging from 0.1
to 1.7 mm. For example, BPTC-BPY-3 manifested as a bulk,
parallel prismatic, yellow transparent crystal with a size of about
100 um (Fig. 2(i)). Thermogravimetric (TG) analysis of BPTC-BPY-
R demonstrated their similar and good thermal stabilities. It was
observed that BPTC-BPY-R maintained its significant weight until
270 °C (small mass loss due to solvent), followed by a gradual
weight reduction due to the combustion of the jonic single crystal
frame in air (Fig. 2(m)).

The characteristic functional groups of single-crystal products, as
well as the corresponding raw materials, were investigated using
Fourier transform infrared (FT-IR) spectroscopy (Fig. 2(n) and Fig.
$4 in the ESM). The characteristic peaks at 1703 and 1637 cm™
corresponded to the stretch vibration of C=0 and C-N,
respectively, in HBPTC and BPY-R. Subsequently, FT-IR spectra
of the synthesized BPTC-BPY-R illustrate the presence of C=0O
(~ 1713 cm™) and C-N (~ 1636 cm™). In addition, a wide peak at
3000 cm™ corresponds to the C-H stretch vibration of the alkyl
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Figure1 (a) Synthesis of ionic single crystals of BPTC-BPY-R and (b) the ionic bonds between H,BPTC and BPY-R.

chain. These results demonstrate the successful synthesis of the
ionic single crystal materials. The specific surface areas and pore
size characteristics of BPTC-BPY-R were investigated through CO,
adsorption—desorption. The specific surface area of BPTC-BPY-R
was calculated to be 8.3, 16.3, 67.1, 33.0, 58.8, and 4.2 m*/g (Fig. 2(o)
and Fig. S5 in the ESM). Meanwhile, the pore size distributions
indicate that the materials have a complex micropore structure (Fig.
S6 in the ESM). This intricate pore architecture facilitates the
diffusion of seawater within BPTC-BPY-R, thereby enhancing ion
transport and augmenting the U(VI) adsorption capacity of the
material. Then, we investigated the hydrophilic properties of BPTC-
BPY-R using water contact angle measurements. The results
revealed that an increase in hydrophobicity from 9.7° to 57.9° with
increasing alkyl chain length in the anionic ligands (Fig. 2(p) and
Figs. S7-S12 in the ESM). These findings indicate the strong
hydrophilicity of these materials, enabling effective U(VI)
adsorption.

2.2 Adsorption performance and influencing factors for
U(vD

The adsorption performance is significantly correlated with the pH
of the solution, as it affects both the chemical form of U(VI) and the
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BPY-BPTC-6

surface charge of the adsorbent. Consequently, the effect of alkyl
chain length and pH on the uranium extraction was investigated by
evaluating the adsorption capacity and zeta potential of BPTC-BPY-
R. Compared to other ionic single crystal materials, U(VI)
adsorption capacity analysis revealed that BPTC-BPY-3 exhibited
the highest uranium adsorption capacity of 405.2 mg/g in uranyl
nitrate aqueous solution at pH = 6 (Fig. 3(a)). This may be
attributed to the special crystal stacking mode and larger specific
surface area of BPTC-BPY-3, which was able to expose more
adsorption sites, allowing more U(VI) species to be adsorbed into
the structure [39]. Additionally, the isoelectric point of BPTC-BPY-
3 was 2.9 (Fig. 3(b)). When the pH value was less than 2.9, the
positively charged uranium groups experienced repulsion from the
positively charged BPTC-BPY-3 surface, resulting in a decreased
adsorption capacity for uranium. As the pH increased, the surface
of BPTC-BPY-3 became negatively charged, leading to a gradual
increase in adsorption capacity. At this point, the adsorption of
U(VI) may be attributed to the electrostatic attraction, which makes
uranium closer to the active site, which not only improves the
kinetics but also improves the utilization rate of functional groups.
Starting from pH = 4, various forms of uranium hydrolysis
occurred, with the dominant species being UO,* (Fig. 3(c)).
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Figure 2 Morphological and structural characterizations of ionic single crystal BPTC-BPY-R (R = 1-6). ((a)-(f)) Experimental and simulated PXRD patterns. ((g)-(1))
Optical microscopy. (m) Thermo gravimetric analysis (TGA) plot. (n) FT-IR spectra of HBPTC and BPTC-BPY-R. (0) CO, adsorption—desorption profile of BPTC-BPY-

R(R=1,3,and 5) and (p) water contact angle.

Whereas, when the pH exceeded 6, the adsorption capacity
gradually decreased. This may be attributed to the continuous
deprotonation of the adsorbent, resulting in an increased negative
charge that hinders the adsorption of negatively charged U(VI)
species in the material. Thus, pH = 6 was chosen for subsequent
adsorption experiments. Furthermore, the solid-liquid ratio in the
adsorption solution was investigated. The removal rate of uranium
with the BPTC-BPY-3 concentration increased from 0.1 to 0.5 g/L,
reaching a plateau at 0.4 g/L (Fig. S13 in the ESM). However, with
the increase in remove rate value, the adsorption capacity decreases.
For ensuring both high adsorption capacity and removal rate, a
solid-liquid ratio of 04 g/L was used in the subsequent
experiments.

2.3 Adsorption isotherms, kinetics, and thermodynamics
studies

To elucidate the effect of the initial U(VI) concentration on the
adsorption of BPTC-BPY-R, the adsorption isotherms of
50-600 ppm U(VI)-loaded solution were plotted. The results
showed that the maximum adsorption capacities of BPTC-BPY-R
(R = 1-6) were 241.3, 275.0, 686.8, 293.3, 147.4, and 39.4 mg/g,
respectively, among which BPTC-BPY-3 showed outstanding
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adsorption capacity (Fig. 3(d)). Therefore, BPTC-BPY-3 was
chosen as the representative of ionic single crystals for subsequent
U(VI) adsorption experiments. To delve deeper into the interaction
mechanism between the adsorbent material and U(VI), the
adsorption experimental data were fitted with the Langmuir and
Freundlich adsorption isotherm models (Fig. 3(e) and Table S7 in
the ESM). The correlation coefficient (R?) obtained from the
Langmuir model fitted to the experimental data was 0.99, while the
R of the Freundlich model was 0.92. The above results showed that
the adsorption of U(VI) by BPTC-BPY-3 was consistent with the
Langmuir isotherm model, with the active adsorption sites
uniformly distributed on the surface of the material, and the
adsorption of U(VI) was monolayer adsorption.

Adsorption time is one of the important parameters affecting the
adsorption efficiency of U(VI) by the adsorbent. Within 1 min, the
adsorption capacity of BPTC-BPY-3 on U(VI) increased sharply,
reaching equilibrium within 2 min. To further investigate the
kinetics of U(VI) adsorption by the material, the above adsorption
experimental data were fitted by using the proposed first-order
kinetic equation and the proposed second-order kinetic equation
(Fig. 3(f) and Table S8 in the ESM). The R’ obtained by fitting the
proposed first-order kinetic equation to the experimental kinetic
data is 0.917, and the proposed second-order kinetic equation fits
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Figure 3 U(VI) adsorption performance. (a) Optimal pH for U(VI) adsorption of BPTC-BPY-R (R = 1-6). (b) Values of zeta potentials at different initial pH values of
BPTC-BPY-3. (c) Existing forms of uranium at different pH conditions. (d) Adsorption isotherms of BPTC-BPY-R (R = 1-6). (¢) The Langmuir and Freundlich isotherm
models of BPTC-BPY-3. (f) Effect of contact time on the adsorption process of U(VI) and linear quasi-secondary kinetic modeling of BPTC-BPY-3. (g) Effect of

temperature of BPTC-BPY-3.

the experimental kinetic data better, with a R* as high as 0.999 and a
calculated adsorption capacity of 199.75 mg/g, which was close to
the experimental value. That is to say, the adsorption of U(VI)
aligns more closely with the proposed second-order kinetic
equation, indicating that the chemical adsorption predominantly
governs the adsorption of U(VI) by the material.

Meanwhile, the effect of BPTC-BPY-3 on the adsorption capacity
of U(VI) at different temperatures (283, 293, and 303 K) was
investigated (Fig. 3(g) and Fig. S14 in the ESM). Results indicated
that higher temperatures enhanced U(VI) adsorption capacity,
suggesting an endothermic nature of the adsorption process.
Subsequently, the thermodynamic characteristics of the U(VI)
adsorption process were investigated, and the thermodynamic
parameters, enthalpy (H'), entropy (S°), and Gibbs free energy
(G°), were calculated according to the equations (Table S9 in the
ESM). Analysis of the data reveals that the positive H® signifies an
endothermic nature of the U(VI) adsorption process, while positive
S’ suggests that an increase in disorder at the solid-liquid interface
during the process of U(VI) adsorption. Across various
temperatures, the negative and decreasing G’ with increasing
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temperature, indicates that the process of U(VI) adsorption by the
material is spontaneous.

24 Practical application studies

While the majority of the uranium extraction studies reported are
based on batch experiments [40, 41], the penetration experiments,
which closely mirror practical applications, have been scarcely
examined. The dynamic loading adsorption performance of BPTC-
BPY-3 for a high initial concentration (50 ppm) of U(VI) using a
penetration curve was evaluated (Fig. 4(a)). The experimental
results, depicting the normalized uranium percentage at the outlet
as a function of volume, were illustrated in Fig. 4(b). The fixed bed
maintained a high removal efficiency of up to 30 mL, beyond which
U(VI) began to penetrate the BPTC-BPY-3 fixed bed, with
complete breakthrough occurring after 100 mL. These results
underscore that the material has robust performance in practical
applications.

To determine the recyclability of BPTC-BPY-3, an eluent
containing sodium carbonate (1 M) and hydrogen peroxide (0.1 M)
was used to elute uranium from the U(VI)-loaded adsorbent. In the
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found in Table S10 in the ESM).

presence of carbonate and hydrogen peroxide, an extremely stable
uranyl peroxycarbonate complex was formed, resulting in the
elution of bound U(VT) from the adsorbent. The initial elution cycle
achieved a remarkable elution efficiency of 99.16% (Fig. 4(c) and
Fig. S15 in the ESM), which is crucial for the recovery of uranium
resources from aqueous solutions. After four regeneration cycles,
the material retained 78.80% of its initial adsorption capacity,
demonstrating satisfactory reproducibility of the U(VI) adsorption
rate and capacity, making it suitable for U(VI) adsorption
experiments in natural seawater.

Given the high salt concentration in seawater, we explored the
effect of NaCl concentration on U(VI) adsorption experiments. As
the salt concentration increased from 0.2 to 1 M, BPTC-BPY-3
maintained a stable U(VI) adsorption capacity (Fig. S16 in the
ESM), indicating robust performance in the high-salt environment.
Another important factor that significantly affects the effectiveness
of U(VI) adsorption is adsorption selectivity. Natural seawater
contains various highly concentrated interfering ions coexisting
with U(VI), which seriously impedes the adsorption of trace
amounts of uranium. Hence, the selective adsorption of U(VI)
amidst a mixture of interfering ions is essential for uranium
extraction from seawater. The partition coefficient (Ky) was
calculated to evaluate the affinity of uranium for the material. In
general, materials with K; values > 10* mL/g are considered good
adsorbents for uranium recovery [42]. In the work, the calculated
Ky value of BPTC-BPY-3 is about 3.998 x 10° mL/g, which is
comparable to or superior to the excellent adsorbents reported so
far in Refs. [43—45]. For other metal ions commonly found in
seawater (including Na, K*, V*, Zn*, Sr*, Cs*, Cu*, Ni**, Ca*, Co™,
and Mg*), the K, values are less than 2 x 10° mL/g, highlighting the
BPTC-BPY-3 is extremely selective for U(VI) (Fig. 4(d)). The
excellent selectivity for U(VI) compared to other ions is attributed
to the strong affinity between U(VI) and the functional groups
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anchored on the surface of the ionic single crystal. All these
outstanding adsorption performance characteristics suggest that
BPTC-BPY-3 can be used as a unique adsorbent for ultra-selective
recovery of uranium from seawater.

Furthermore, the U(VI) adsorption performance of BPTC-BPY-
3 in low-concentration simulated seawater was investigated. The
adsorbent demonstrated significant adsorption efficacy on U(VI) in
the 2-800 ppb range (Fig. S17(a) in the ESM). BPTC-BPY-3 was
also applied to unspiked natural seawater from the Yellow Sea of
China with an adsorption amount of BPTC-BPY-3 in 4 L, and the
results are shown in Fig. 4(e). The adsorption capacity was
determined to be an impressive 7.41 mg/g after 20 days of
immersion in natural seawater. The detailed adsorption data for
UES are shown in Table S10 in the ESM. This rapid recovery of
U(VI) from natural seawater is comparable to some of the known
excellent adsorbents (Fig. 4(f) and Table S11 in the ESM) [14, 43,
45-56]. Concurrently, the capture of trace U(VI) from spiked
natural seawater was investigated (Fig. S17(b) in the ESM). U(VI)
was spiked at 2, 4, and 8 ppm, respectively, and it was observed that
the adsorption kinetics of BPTC-BPY-3 effectively reduced the
U(VI) concentration from 8 to 6.66 ppm within 30 min, with
proportional reductions at other concentrations. To verify the
stability of the adsorbent in seawater for extended periods of time,
we analyzed the changes in FT-IR spectra and scanning electron
microscopy (SEM) image of BPTC-BPY-3 after 1, 7, and 14 days of
adsorption of U(VI). After 14 days, FT-IR spectra showed that no
significant changes in surface functional groups were observed, and
characteristic peaks of U(VI) were still detectable (Fig. S18 in the
ESM). In addition, the SEM images showed no significant changes
in the sorbent surface (Fig. S19 in the ESM), indicating that the
structure retains excellent stability even after prolonged exposure.
These results indicate that the material can effectively adsorb trace
amounts of uranium from natural seawater.
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25 Adsorption mechanism of U(VI)

Next, the selective adsorption mechanism of U(VI) by BPTC-BPY-3
was systematically studied. Mapping revealed the homogeneous
distribution of U(VI) on the adsorbent with other elements
(including C, O, and N) from BPTC-BPY-3 (Fig. 5(a)).
Complementary to this, energy dispersive spectroscopy (EDS)
method was also carried out (Fig. S20 in the ESM). The content of
uranium increased from a negligible presence to 24.1% upon
adsorption of UO,. It was attributed to the higher binding capacity
of the divalent UO;* to the material. FT-IR and X-ray
photoelectron spectroscopy (XPS) experiments of BPTC-BPY-3
loaded with UO,* were carried out to elucidate the interaction
between BPTC-BPY-3 and UQO,* at the molecular level. As shown
in the FT-IR spectra (Fig. 5(b)), the characteristic antisymmetric
stretching vibrational peak of O=U=O shifted from 932 to 916 cm™
after adsorption, indicating that a strong interaction between UO,*
and BPTC-BPY-3 has been formed.

In addition, the appearance of the U 4f peak in the XPS spectra
further confirmed the successful adsorption of U(VI) on BPTC-
BPY-3 (Fig. 5(c)). The coordination behavior of UO,* with BPTC-
BPY-3 was further verified by showing the U 4f spectra of BPTC-
BPY-3 after the adsorption of U(VI) in Fig. 5(d). The pristine peaks
of U 4f;, and U 4f,, were located at 3969 and 386.8 eV,
respectively, with a spin-orbit splitting value of 10.1 eV [57]. In the
case of BPTC-BPY-3 adsorption, new peaks with lower binding
energies appeared for U 4f;, and U 4f;, at 392.9 and 382.1 eV,
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respectively, indicating that the U 4f binding energy peaks were
shifted to lower binding energies. This implies that BPTC-BPY-3
closely interacts with UO,*. The results demonstrate the occurrence
of U ¢« O coordination reactions. For the C 1s spectra (Fig. 5(e)),
prior to U(VI) adsorption, it can be decomposed into four
independent peaks (284.7, 2852, 286.6, and 2883 eV)
corresponding to C-C/C-H/C=C (carbon skeleton and phenyl
group of the BPTC-BPY-3), C-O (carboxylate skeleton of the
H,BPTC”), C-N/C=N (BPY* pyridine ring), and C=0O (carboxyl
group). Upon adsorption of U(VI), the C 1s peak of C=0O increased
to 288.3 eV. This can be attributed to the fact that the O 1s peak of
O-C=0 increases to higher binding energies upon adsorption of
uranium, and the carboxylate binding energies are characterized by
a significant shift to higher energies, suggesting chelation with the
uranyl cation. It can therefore be inferred that the carboxylate
group of H,BPTC* contributes significantly to the adsorption of
uranjum and that the electron cloud is tilted toward C due to
binding with U(VI). As shown in the N 1s spectra (Fig. 5(f)), only
one peak was observed at 402.0 eV in the original BPTC-BPY-3,
which can be attributed to the C-N (pyridine ring of BPY>). After
the adsorption of U(VI), a new peak with a binding energy of 406.6
eV appeared, which can be attributed to the nitrate from
UO,(NO3),-6H,O. For the original O 1s spectra of BPTC-BPY-3
(Fig. 5(g)), the binding energies were categorized into four peaks
corresponding to C=0O (530.8 eV), O-H (5315 eV), C-O
(532.0 eV), and O-C=0 (532.7 eV). After adsorption of U(VI), the
overall shape of the O 1s peak changed significantly. A new peak
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belonging to the O=U=0 group appeared at 531.5 €V, indicating
the chemical interaction between BPTC-BPY-3 and U(VI). It is
noteworthy that the binding energies of O-H and O-C=0
increased to 531.8 and 533.1 eV, respectively, suggesting that the
carboxyl group (O-C=0) plays important role in the adsorption of
uranium through ligand and hydrogen bonding. In short, the C 1s,
N 1s, and O 1s spectra strongly substantiate the binding of U(VI) to
BPTC-BPY-3, predominantly through coordination of carboxyl
functional groups on anionic biphenyls in BPTC-BPY-3. In
addition, the presence of cation BPY* can adsorb anion (nitrate).
Therefore, BPTC-BPY-3 has a remarkable adsorption capacity for
U(VI) due to the coexistence of anions and cations, which can not
only attract the U(VI) by electrostatic interactions, but also provide
enough carboxyl groups.

U L;-edge X-ray absorption near-edge structure (XANES) and
extended X-ray absorption fine structure (EXAFS) were studied to
detect the uranyl coordination environment in BPTC-BPY-3 after
U(VI) adsorption. The typical characteristic peak at about 17,168 eV
in the U L;-edge XANES spectra was the so-called white line peak
(Fig. 6(a)), which corresponds to the transition of electrons from
the occupied U 2p state to the unoccupied 6d state. XANES spectra
illustrated that BPTC-BPY-3 binds uranyl in the form of U(VI),
and the collected data are very similar to the reference data of

U(V)O; and U(VI)O,(OH),. Fourier transform of U L;-edge
EXAFS (Fig. 6(b)) showed that two peaks were detected at 1.79 and
2.34 A in R space. Among them, the peak at 1.79 A corresponds to
the scattering path of axial oxygen atom (U-O,) in uranyl, and the
peak at 234 A corresponds to a coordination bond between
uranium atom and carboxyl oxygen atom (U-O,,) from carboxyl
groups and coordinated water, which is consistent with the
calculated coordination number between uranium and oxygen
(Table S12 in the ESM).

To elucidate the adsorption mechanism and the detailed
coordination structure at the BPTC-BPY-3 (solvent molecules are
omitted) interface, the possible binding modes of U(VI) and V(V)
with BPTC-BPY-3 were predicted by density functional theory
(DFT) calculations, and the detailed interaction positions, binding
energies, and selectivity mechanisms were obtained. The optimized
configuration and adsorption energy of BPTC-BPY-3 on UO,* and
VOj5 ligands are shown in Figs. 6(c) and 6(d). For BPTC-BPY-3,
the predominant driving force of U(VI) adsorption comes from
carboxyl groups in organic ligands. The coordination mode
between carboxyl functional group and UO,* (-4.85 eV) shows
higher binding energy than that of VO, (-2.54 V). These results
are basically consistent with the experimental data. Furthermore,
the bond length between BPTC-BPY-3 and UO,* (1.892 A) is
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notably shorter than that of BPTC-BPY-3 and VO; (2.036 A),
implying that the adsorption of uranyl ions on the single crystals is
a chemisorption process, distinguished by superior selectivity.
Electrostatic potential distribution calculations were then conducted
to predict the chemical reaction propensity at each site, as shown in
Figs. 6(e) and 6(f). Because the electrostatic attraction between
molecules is intimately linked to the electrostatic interactions on the
outer surface of the molecules during the initial stage of the
chemical reaction. In the adsorption of U(VI) by BPTC-BPY-3,
electrons were transferred from the uranyl ions to the single
crystals, indicating significant covalent interactions between the
single crystals and the uranyl jons.

Based on the above results, the adsorption mechanism of BPTC-
BPY-3 on U(VI) can be described as follows: (1) coordination
between uranium and carboxyl group of organic anion building
block, and (2) the electrostatic interaction of the organic cation
building block strengthens the adsorption of uranyl-coordinated
anions (Fig. 6(g)). In addition, by tuning the length of alkyl chain,
the stacking mode, specific surface area, and contact angle of the
material were skillfully controlled, so that U(VI) could be effectively
adsorbed on the ionic single crystal surface. These findings indicate
that this adsorption material has great potential for application in
uranium extraction from seawater.

3 Conclusions

In conclusion, utilizing viologen-derived with different alkyl chain
lengths and polycarboxylic acid as organic ion building blocks, six
ionic single crystals were firstly assembled, which were then
employed as adsorbents in the development of UES through the
synergistic effects of electrostatics and coordination exerted by the
different organic ion building blocks. Among them, the higher
specific surface area BPTC-BPY-3, based on its special stacking
mode and more accessible sites, showed a quick ultra-selective
adsorption of U(VI) with a maximum adsorption capacity of
686.8 mg/g within 2 min. In natural seawater, a satisfactory U(VI)
uptake capacity of 7.41 mg/g was achieved in 20 days. The
adsorption mechanism of uranyl ions analyzed by XPS, XAFS, and
DFT calculations revealed that the special coordination ability of the
carboxyl group endowed the adsorbent with high binding selectivity
and binding affinity to U(VI), which effectively avoided the
influence of interfering ions and achieved a high U(VI) extraction
capacity in natural seawater. In addition, the adsorbent
demonstrated exceptional stability and reusability, making it highly
advantageous for practical applications for uranium extraction from
seawater. This study demonstrated the significant tunability of
electrostatic interactions in ionic materials through the utilization of
anionic-cation building blocks, which may open new opportunities
for the development of organic ionic single crystals formed by non-
covalent interactions for other potential applications.

Electronic Supplementary Material: Supplementary material
(materials, apparatus, materials preparation, adsorption
performance tests for U(VI), and calculation method) is available in
the online version of this article at https://doi.org/10.26599/NR.2025.
94907856.
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