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ABSTRACT: We have discovered both 9-methyl- and 9-phenyl-
9H-9-silafluorene as effective reagents for direct amidation. The
protocol is performed under open-air conditions without rigorous
exclusion of moisture, producing amides in high yields with only
H2 and disiloxane as byproducts. The disiloxane byproduct can be
reduced in a separate step to recycle the silafluorenes. This
breakthrough represents the first example of a recyclable
organosilane coupling reagent and is a significant step toward
developing greener amidating agents.

The amide bond is one of the most significant functional
groups in nature (e.g., proteins), pharmaceuticals

(present in approximately 50% of the top 200 small molecule
drugs in 2024),1 and commodity chemicals.2,3 It is no surprise
then that the preparation of amides is among the most
frequently performed chemical reactions. Common coupling
reagents are effective but are also wasteful and raise safety
concerns;2,4 HATU for example has been reported as an
immune sensitizer,5 and HOBt possesses explosive properties.6

The American Chemical Society Green Chemistry Institute
Pharmaceutical Roundtable identified sustainable and catalytic
amide bond formation as a key research area in 2007,7 and this
goal was re-emphasized in 2018,8 highlighting it as an unmet
critical target for synthetic method development.
Organosilanes are emerging as alternative amide coupling

reagents because of molecular silicon’s natural abundance,9,10

ease-of-handling, and low inherent toxicity.11 There has been
notable progress in the field of organosilane coupling reagents,
with recent examples including dichlorosilafluorene,12 Si-
(OMe)4,

13 MeSi(OMe)3,
14 Ph2SiH2,

15,16 and PhSiH3.
17,18

Substituted triphenylsilanols have also been explored as
silicon-centered molecular catalysts; practical adoption of this
method is limited by catalyst degradation and narrow substrate
scope.19

In this work, we sought to innovate in the area of silane
amide coupling reagents using strain-release Lewis acidity.20,21

We identified 9-methyl-9H-9-silafluorene (1a) and 9-phenyl-
9H-9-silafluorene (1b) as readily synthetically accessible
potential coupling reagents (Figure 1), inspired by Charette
and co-workers’ previous application of the silafluorene
scaffold to activate carboxylic acids as electrophiles.12

However, using a monohydrosilane instead of a dichlorosi-
lane12 is crucially advantageous because: 1) hydrosilanes are
typically easier to handle (e.g., stable in open air) than
chlorosilanes, and 2) the byproduct of a tertiary silane is

presumptively a small molecule disiloxane, which is easier to
further manipulate (e.g., reduced to regenerate the hydro-
silane) than a polysiloxane byproduct of a reaction using a
primary or secondary silane.
9-Methyl- (1a) and 9-phenyl-9H-9-silafluorene (1b) were

synthesized from commercially available 2,2′-dibromobiphenyl
according to a modified literature procedure.22−24 The 9-
hydrosilafluorenes were handled in open air and stored on the
benchtop for several months with no observable decom-
position.
We began by investigating the amidation capability of the

silafluorenes in comparison to their acyclic analogues to test
the effects of ring strain (Figure 2). Under conditions adapted
from our previous work,16 the acyclic analogues of 1a
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Figure 1. Silafluorene-mediated amide coupling reactions.
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(Ph2MeSiH) and 1b (HSiPh3) produced minimal amide (2a)
(1% and 13% NMR yield, respectively). In contrast, the use of
silacycles 1a and 1b as coupling reagents proved moderately
effective under these conditions. These results indicate that
ring strain plays a key role in enhancing the silane’s amidation
activity. 1a was chosen as the coupling reagent for continued
study (over 1b) due to the relative cost of starting materials.
Under the optimized reaction conditions (Table 1, entry 1),

amide (2a) was formed in 88% isolated yield. Amidation was

only observed in the presence of both N-methyl pyrrolidine
(NMPi) and silane (Table 1, entries 2 and 3). Other bases
such as Hünig’s base and N-methyl morpholine provided
amides in lower yields (Table S8). When one equivalent of
silane (1a) was used, the yield of 2a dropped to 42% NMR
yield (Table 1, entry 4). The reaction can be carried out within
30 min to afford 2a without a significant change in the yield
(Table 1, entry 5). Performing the reaction under nitrogen
atmosphere minimally impacted the yield of 2a (Table 1, entry
6). Reducing the temperature to 60 °C and running the
reaction over 2 h afforded 2a in 88% isolated yield (Table 1,
entry 7); this “low and slow” method would be useful for
applying this method to more sensitive molecules. Interest-
ingly, ethyl acetate could also be used as a solvent, forming 2a

in 73% isolated yield (Table 1, entry 8). While MeCN remains
the solvent of choice for the substrate scope, this result shows
that ethyl acetate can be used as a greener alternative without
significantly compromising efficiency. Preliminary character-
ization of the silane byproduct of the amidation suggested that
the byproduct of the reaction was the disiloxane 3a; we
confirmed this by obtaining an X-ray crystal structure (Figure
S2).
To probe the mechanism and understand the requirement

for two-plus equivalents of silane to achieve full consumption
of starting material, the hydroxy- (4a, presumptive direct
byproduct of amidation) and disiloxane (3a, observed
byproduct) derivatives of 1a were independently synthesized
and then tested as potential coupling reagents under the
standard conditions (Figure 3). Under the amidation

conditions, the silanol (4a) was spontaneously converted to
the disiloxane (3a) and no amidation was observed. When
disiloxane (3a) was attempted as the coupling reagent, no
reaction was observed. A test reaction between 1a and 4a in
the presence of NMPi led to complete conversion to 3a
(Figure S6). The results suggest that silanol (4a) is a transient
byproduct, while disiloxane (3a) represents the unreactive
resting state in hydrosilafluorene-mediated amidation. This
observation aligns with the findings by Braddock and Lickiss,
who reported that triarylsilanols degrade to form the inactive
disiloxanes over the course of an amidation reaction.19

Therefore, although silanols generally may possess amidating
activity, 4a simply condenses into inactive disiloxane (3a)
under the investigated conditions.
A substrate scope was carried out using the standard

conditions developed (Figure 4). We began by coupling
aliphatic carboxylic acids with primary amines to make
secondary amides. Changing the substituents on the aliphatic
carboxylic acid did not seem to impact the yield of amide
significantly since 2a−2c were formed in high yields alike.
Amide 2a was synthesized in 84% yield at the 1 mmol scale. A
branched, bioactive aliphatic carboxylic acid (ibuprofen) was
also successfully amidated using benzylamine to form 2d in
95% yield. We then surveyed different primary amines as
substrates. Amide 2e was made in 90% yield. Electron donating
group (−OMe) or electron withdrawing group (−CF3) at the
para- position on the benzylamine was tolerated as 2f and 2g
were formed in 76% and 87% yield, respectively. Other
primary amines, such as butylamine, reacted to form 2h in 84%
yield. Substituents at the α-position of the amine substrate

Figure 2. Acyclic vs cyclic tertiary hydrosilanes as coupling reagents.
NMR yields reported using ethyl acetate as an internal standard.

Table 1. Optimization Results

Entry Deviation from standard conditions NMR Yield of 2a (%)a

1 - 89 (88)
2 1 eq 1a, No NMPi 0b

3 No silane 0b

4 1 eq silane 42b

5 30 min 85
6 N2 atmosphere, 30 min 87
7 60 °C, 2 h 91 (88)
8 Ethyl acetate, 30 min 78 (73)c

aIsolated yield in parentheses. NMR yield obtained using ethyl acetate
as an internal standard. bHeated at 100 °C for 20 min. cNMR yield
obtained using nitrobenzene as an internal standard.

Figure 3. Amidation activity of methylsilafluorene derivatives. NMR
yields reported using ethyl acetate as an internal standard. Isolated
yield in parentheses.
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were also tolerated as 2i was synthesized in 87% yield.
Secondary amines reacted much slower to form amides, even
with prolonged heating (2j). However, cyclic amines such as
pyrrolidine formed the amide in high yield (2k). Aromatic
carboxylic acids were then reacted with benzylamines to form
aryl amides. Amides 2l−2n were successfully prepared under
prolonged heating. Since both 1) silanes are reducing
reagents25,26 and 2) H2, which should be noted is a flammable
gas, is formed as a byproduct, we wanted to verify that a
reducible functional group would not be hydrogenated under
the amidation conditions. Amide 2o was made in 81% yield,
with the alkene functionality intact. A heterocyclic amide (2p)
was formed in moderate yield of 47% from oxazole-4-
carboxylic acid. Dipeptides 2q−2t were prepared in yields
ranging from 13% to 74% yield under modified reaction
conditions including DMAP, a common additive to improve
yields in peptide synthesis.12,15,27,28 The methyl ester group
remained intact under the conditions. The coupling of two
valines (2t) was less productive than the coupling of two
alanines (2q) presumably due to steric interference; bulky
substitution on the carboxylic acid coupling partner alone (2r)
had a greater (negative) impact on reaction efficiency than
bulky substitution on only the amine partner (2s).
We also discovered some limitations of the explored

conditions: sterically hindered primary amines, secondary
amines, and aniline were not successfully amidated, and the
preparation of a macrocyclic amide and trifluoroacetamide
were also unsuccessful.
Silyl esters have been well-documented as intermediates in

silane-mediated amidation reactions.29 To investigate whether
9-hydrosilafluorene-mediated amidation proceeds through the
presumed silyl ester intermediate, an amidation reaction was
performed in two steps (Figure 5). DCM was employed as the

solvent to minimize adventitious water content, which might
have resulted in the undesired hydrolysis of the silyl ester
intermediate during its prolonged presence in this experiment.
In the first step, the reaction was set up with the omission of
the benzyl amine and the crude mixture was analyzed by 1H,
13C, and 29Si NMR; this showed the formation of the silyl ester
intermediate 5a. When benzylamine was subsequently added
to this crude reaction mixture (containing largely the silyl
ester), amide 2a was observed in 44% NMR yield, with the
phenylacetic acid mass balance and disiloxane (3a) as the sole
silane byproduct. When the silanol (4a) was independently
synthesized and then added to the silyl ester intermediate (5a),
phenylacetic acid was recovered and disiloxane was observed as
the sole silane species (Figure S12). This shows that the
transient silanol − the presumed unobserved direct byproduct
of amidation − can unproductively react with the silyl ester to
form the disiloxane. This further elucidates the mechanism

Figure 4. Substrate scope. Isolated yields reported. Deviation from the standard conditions: a21 h; b30 min; c60 °C. 21 h; d0.5 eq 4-
dimethylaminopyridine, 21 h; e2 eq of NMPi, 60 °C, 21 h. NMR yield reported using ethyl acetate.

Figure 5. Silyl ester intermediate observed by NMR spectroscopy.
SiOSi = methyldisiloxane (3a).
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underlying the necessity for a 2-fold amount of silane to enact
efficient amidation.
We envisioned reducing disiloxane (3a) to 9-methyl-9H-9-

silafluorene (1a), with the aim of developing a recyclable
coupling reagent (Figure 6). To explore this, amide 2a was

prepared using the optimized reaction conditions. 2a and the
disiloxane (3a) were isolated separately by column chromatog-
raphy in 80% isolated yield and quantitative recovery,
respectively. Next, the disiloxane was reduced using LiAlH4
to form 1a quantitatively, and then this recaptured 1a was used
in another amidation reaction to form 2a in 81% isolated yield
(with disiloxane again quantitatively recovered). Only a limited
number of recyclable (carbon-based) amide coupling reagents
have been reported in the literature.30,31 Among recyclable
silicon coupling reagents, silica gel32 and mesoporous
silicas33−35 are the only known examples, both of which 1)
are heterogeneous and 2) require high temperatures for
reactivation prior to reuse. This method recycles 2a, in a single
step within 3 h.
A plausible mechanistic pathway for 9-hydrosilafluorene-

mediated amidation is shown in Figure 7. The silafluorenes
readily form the silyl ester in the presence of NMPi, as
evidenced by spontaneous H2 evolution, which was not
observed when the acyclic silanes (Figure 2) were used. This
suggests that the ring strain impacts silyl ester formation.
Consistent with our previous Ph2SiH2 study,16 NMPi plays a
role in the formation of the silyl ester as a general base by
facilitating proton transfer: upon its addition to the carboxylic
acid in the presence of the hydrosilafluorene at room
temperature, we observed immediate H2 evolution. Coordina-
tion between the NMPi and 1a was ruled out as no significant
shift change was observed in the 29Si NMR (Figure S5).
The silyl ester intermediate is converted to the amide

product in the presence of the amine partner. The direct
byproduct of this addition/elimination-type substitution is
presumably silanol, which subsequently condenses with
another equivalent of hydrosilafluorene or an equivalent of
the silyl ester to form the disiloxane (as demonstrated by
experiment in Figure 3). The disiloxane is unreactive under the

amidation conditions used, however it can be isolated and then
reduced in a separate step to regenerate hydrosilafluorene to be
used for another amidation reaction.
This study demonstrates 9-hydrosilafluorenes 1a and 1b as

effective tertiary silane amide coupling reagents. Ring-strain
plays a key role in the reactivity of the 9-hydrosilafluorenes as
the acyclic analogues have significantly reduced amidation
activity. Both 1a and 1b are air-stable, and the amidation can
be carried out without the exclusion of air or moisture. The
silane byproduct is a small molecule disiloxane which can be
isolated by column chromatography and then reduced using
LiAlH4 to regenerate the hydrosilane. This process represents
the first example of a recyclable molecular silane amide
coupling reagent.
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