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Dimethylamino-iodine(in)/PPhz-mediated synthesis
of a-ketoamides from glyoxylic acids

Dan Xiao, Jiaxin He, Kaiyue Yang, Zhijian Wang, Cong Li and Yunfei Du ‘= *

The development of efficient synthetic approaches to a-ketoamides remains a significant objective.
Herein, we report a mild and metal-free method for the preparation of a-ketoamides from glyoxylic acids,
mediated by a dimethylamino-iodine(in)/PPhz system. This method is further utilized for the in situ gene-
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Introduction

a-Ketoamides constitute a distinct and highly valued class of
privileged structural motifs characterized by a keto group at
the a-position of an amide. Numerous bioactive natural pro-
ducts and marine metabolites, including tacrolimus (FK506),"
colibrimycin C,* cytokine inhibitor® and indibulin,* feature
the a-ketoamide backbone (Fig. 1a).”> The exceptional biologi-
cal activity of a-ketoamides arises mainly from the electrophi-
lic a-keto group and has been widely exploited in the design
and synthesis of non-natural antiviral agents, such as narlapre-
vir® and leritrelvir,” all of which are FDA-approved (Fig. 1b).®

Often referred to as activated amides, ao-ketoamides
combine the reactivity of ketones and amides, possessing two
pronucleophilic and two proelectrophilic centers.” Therefore,
they are highly reactive species that undergo a variety of chemi-
cal transformations, including nucleophilic addition,'® as well
as enantioselective ~and chemoselective reductions.'’
Furthermore, they also act as synthetic equivalents of various
organic building blocks, including homoenolates’® and
a-amido silyl enol ethers,'® thereby serving as versatile precur-
sors to a wide range of heterocycles' and structurally diverse
scaffolds such as y-lactams,™ o-ketoesters, a-ketothioesters
and sterically hindered 1,2-diols.*®

Owing to the importance of the aforementioned factors,
numerous methods have been developed for the synthesis of
a-ketoamides.>” In particular, various approaches have
employed o-hydroxyamides, o«-aminoamides,'® acetophe-
nones,"® aryl halides,*® o-ketoaldehydes,** styrenes,”* phenyla-
cetylenes,”® enaminones,** vinyl azides>® and diazo com-
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ration of amino-based hypervalent iodine() reagents, which enable the formation of diverse
a-ketoamides. Mechanistic studies suggest that the transformation proceeds through an ionic pathway,
involving the formation of an active dimethylamino-phosphonium species derived from the reaction
between the novel dimethylamino-iodine(in) reagent (DMI) and PPhs.

pounds®® as key substrates to facilitate this transformation.
These methods generally require metal catalysts, photocata-
lysts or base additives under diverse conditions. Given their
broad utility, greener and more direct methods for synthesiz-
ing o-ketoamides are still highly desirable.

Recently, glyoxylic acids have been widely utilized as ideal
coupling partners in C-N bond-forming reactions to prepare
a-ketoamides, offering an attractive alternative to costly
organometallic reagents and minimizing toxic metal waste
(Fig. 2a).”” In the electrochemical field, Wei’s group reported
the synthesis of a-ketoamides via a decarboxylative coupling of
a-keto acids with isocyanides and water.® Later, a carbonyl-
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Fig. 1 Representative examples of naturally-occurring and therapeutic
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Fig. 2 Different strategies for the synthesis of a-ketoamides from
glyoxylic acids.

carbonyl radical electrochemical cross-coupling between a di-
methylcarbamoyl radical, generated from DMF, and an acyl
radical derived from the electrochemical decarboxylation of
a-ketoacids was developed by Gong’s group.”® In 2019, Zhao’s
group achieved the tosyl chloride-mediated synthesis of aryl
thioamides and aryl-a-ketoamides through base-promoted dec-
arboxylative functionalization of a-oxocarboxylic acids with tet-
raalkylthiuram disulfides (TATD).° Additionally, under visible-
light irradiation, Jana’s group developed a biomimetic strategy
for the highly selective monodemethylation of N,N-dimethyl-
anilines to afford secondary amines, which subsequently
coupled with o-ketocarboxylic or alkynyl carboxylic acids to
furnish o-ketoamides.> In 2024, a visible-light-promoted
a-ketoamidation of o-oxocarboxylic acids with TATD, using
PIDA as the oxidant through a radical pathway was reported by
Majee’s group.>”> However, all of the above method required
amino agents with additional oxidants, via specific electro-
chemical or photochemical pathway to generate a-ketoamides.
Herein, we report a mild and metal-free method for the prepa-
ration of a-ketoamides from glyoxylic acids, mediated by a di-
methylamino-iodine(ur)/PPh; system via dimethyl-
aminophosphonium intermediates generated in situ.

Owing to the low toxicity, mild reactivity, readily availability,
high stability, and ease of handling, hypervalent iodine
reagents have recently attracted considerable attention as oxi-
dants in diverse coupling reactions.*® In particular, iodine(m)
reagents bearing aliphatic amino groups have been syn-
thesized and shown to exhibit excellent reactivity as amination
reagents.® Our group has also been engaged in developing
diverse methodologies utilizing hypervalent iodine reagents,*
and we are particularly interested in the development of a
novel dimethylamino-iodine(m) reagent (DMI), which was syn-
thesized for the first time with straightforward three-step
sequence (Scheme 1a) and characterized by NMR spectroscopy
and X-ray crystallography (Scheme 1b, CCDC 2491335).
Notably, DMI could be prepared on a multigram scale (4.9 g)
without loss of yield. It is bench stable to air and moisture and
could be stored at —20 °C for up to six months without detect-
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Scheme 1 Preparation and identification of the hypervalent iodine
reagent DMI.

able degradation. Thermogravimetric and differential scan-
ning calorimetry (TG-DSC) measurements showed an exother-
mic decomposition at 203.2 °C with a mass change of 88.3%,
which demonstrated that DMI had good thermal stability
(Scheme 1c). With this newly developed DMI in hand, we envi-
sioned that the reaction of glyoxylic acids with DMI might
directly afford a-ketoamides.

Results and discussion

Initially, benzoylformic acid 2a was used as a substrate and
DMI as the aminating reagent, but the reaction failed to
proceed (entry 1, Table 1). In 2018 and 2021, Zhdankin and co-
workers reported that alcohols and amines reacted efficiently

Table 1 Optimization of the reaction conditions?

0 Me,N—I—0 0
OH @AO additive NMe,
solvent, temp.
[ j o E ) [0}
2a 1, DMI 3a
xequiv. of  Additive T Yield?

Entry DMI (v equiv.) Solvent c)  (w)
1 1.2 — DMF 100 NR®
2 1.2 PPh; (1.2) DMF 100 66
3 1.2 PPh; (1.2) DMF 70 82
4 1.2 PPh; (1.2) DMF 50 68
5 1.2 PPh; (1.2) DMF rt 42
6 1.2 P(p-anisole); (1.2) DMF 70 73
7 1.2 Ph,POEt (1.2) DMF 70 15
8 1.2 P(n-Bu); (1.2) DMF 70 21
9° 1.2 DMS (1.2) DMF 70 NR
10 1.2 Et;N (1.2) DMF 70 NR
11 1.2 PPh; (1.2) DMSO 70 78
12 1.2 PPh; (1.2) Toluene 70 67
13 1.2 PPh; (1.2) Dioxane 70 63
14 1.2 PPh; (1.2) ACN 70 54
15 1.2 PPh; (1.2) DCE 70 65
16 1.2 PPh; (1.2) EtOH 70 NR
17 1.2 PPh; (1.2) HFIP 70 NR
18 3.0 PPh; (3.0) DMF 70 79
19° 1.2 PPh; (1.2) DMF 70 80

“Reaction conditions: 2a (0.4 mmol), DMI (x equiv.), additive (y
equiv.), solvent (2.0 mL), 70 °C, 2 h. ?Sealed tube. °Inert atmosphere.
?Isolated yield. ¢ NR = no reaction.
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with various benziodazolones in the presence of PPhj; to afford
corresponding esters and amides.*® Inspired by these work, we
employed PPh; as an additive in this transformation.
Fortunately, the reaction proceeded smoothly with 1.2 equiva-
lents of PPh; as an additive in DMF at 100 °C for 2 h, affording
the desired N,N-dimethyl-2-oxo-2-phenylacetamide 3a in 66%
yield (entry 2, Table 1). The optimal yield of 82% was achieved
at 70 °C, whereas higher temperatures decreased the yield, and
room-temperature conditions also resulted in lower conver-
sions (entries 3-5, Table 1). Furthermore, alternative organo-
phosphorus reagents were tested, such as tris(4-methoxyphe-
nyl)phosphine [P(p-anisole);], ethyl diphenylphosphinite
(Ph,POEt) and tributylphosphine [P(n-Bu)z], but all of them
gave significantly lower yields (entries 6-8, Table 1). Notably,
the use of dimethyl sulfide (DMS) and triethylamine (Et;N) as
a reductant, completely suppressed the reaction (entries 9 and
10, Table 1). Various solvent was also performed. DMSO,
toluene, dioxane, ACN and DCE enabled the transformation to
afford 3a in 54-80% yields (entries 11-15, Table 1), whereas
protonic solvents such as EtOH and HFIP, completely sup-
pressed the reaction (entries 16 and 17, Table 1). We tentatively
proposed that the outcome could possibly be caused by the
instability of dimethylaminophosphonium Int. 1 in EtOH and
HFIP, based on the results of some control experiments (see
SI, Scheme S2). Further improvement using 3.0 equivalents of
DMI and PPh; gave 3a in 79% yield (entry 18, Table 1).
Moreover, a comparable result of an 80% yield was obtained
under an inert atmosphere, implying this transformation was
insensitive to air and moisture (entry 19, Table 1).

With the optimal reaction conditions in hand (entry 3,
Table 1), we next examined the substrate scope using various
aromatic, aliphatic and heteroaryl glyoxylic acids (Scheme 2).
Specifically, phenylglyoxylic acids bearing electron-donating
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Scheme 2 Scope of various aromatic, aliphatic and heteroaryl glyoxylic
acids. Reaction conditions: 2 (0.4 mmol), DMI (1.2 equiv.), PPhs (1.2
equiv.), DMF (2.0 mL), 70 °C, 2 h.
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groups (-Me, -OMe) or halogen substituents (-F, -Cl, -Br) at
the ortho-, meta- or para-positions of the phenyl ring reacted
efficiently, affording the corresponding products (3b-h) in
moderate to good yields. Notably, this protocol was also com-
patible with electron-withdrawing groups (-NO,, -CF;) and
reactive groups (-OH, -NH,) at the ortho- and para-positions of
the phenyl ring, affording the desired products (3i-m) in
51-91% yields. Furthermore, phenylglyoxylic acids bearing a
1-naphthyl substituent, as well as heteroaryl glyoxylic acids
containing indole, thiophene or furan units, also delivered the
desired products 3n-q smoothly in yields of 76-86%. In
addition, cyclohexyl- and cyclopropyl-substrates afforded the
corresponding a-ketoamide 3r and 3s in 67% and 71% yield,
respectively. We also attempted to extend the present reaction
system to benzoic acid and 2-naphthylacetic acid as substrates.
Unfortunately, the corresponding experimental results demon-
strated that they were not compatible with the established
transformation (not shown).

Encouraged by these results, we next examined the di-
methylamination of N(O)-substituted glyoxylic acid substrates
using this newly established DMI/PPh; system (Scheme 3).
This protocol efficiently furnished N-substituted unsymmetric
a-ketoamide 5a in a 63% yield. Substrates bearing either elec-
tron-withdrawing (-F) or electron-donating (-Me, -OMe) sub-
stituents on the phenyl ring were well tolerated, affording the
desired products 5b-f with 60-70% yields. Phenol-protected
substrate also reacted smoothly to afford product 5g in a yield
of 76%. In addition, 2-((5-chloropyridin-2-yl)amino)- and 2-
(phenyl(pyridin-4-yl)Jamino)-substituted =~ 2-oxoacetic  acids
afforded the corresponding products 5h and 5i in 83% and
72% yields, respectively. Furthermore, the mild conditions and
excellent functional group tolerance enabled the application of
this method to the dimethylamination of drugs and natural

o} Me,N—|—0 o)
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Scheme 3 Dimethylamination of N(O)-substituted glyoxylic acid sub-
strates. Reaction conditions: 2 (0.4 mmol), DMI (1.2 equiv.), PPhs (1.2
equiv.), DMF (2.0 mL), 70 °C, 2 h.
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products containing glyoxylic acid moieties. N-Substituted
drugscaffolds, such as adamantane, dopamine, tryptoline and
iminostilbene were successfully converted into the corres-
ponding dimethylaminated products 5j-m in good yields of
73-86%. Moreover, a range of O-substituted natural com-
pounds were also examined. All tested molecules, including
pregnenolone, r-menthol, and t-proline, were well tolerated
under the standard conditions, affording the desired products
5n-p in 65-91% yields. All of these drug molecules underwent
initial modification using a-ketoamides with this method,
offering an innovative strategy for introducing biologically
active electrophilic a-keto groups into drug molecules.

With above results in hand, we investigated whether the
aminated hypervalent iodine reagent could be generated
in situ, thereby enabling the introduction of diverse amino
functional groups in a one-pot reaction under mild conditions
(Scheme 4). To test this hypothesis, DMI was first prepared
using N,N-dimethyltrimethylsilylamine and catalytic KF in
ACN. After 2 h of reaction, the crude mixture containing DMI
was used directly without any purification. Substrate 2a and
PPh; were added and the mixture was stirred at 70 °C for an
additional 2 h. Gratifyingly, this one-pot protocol afforded the
desired product 3a in a yield of 66%. Furthermore, various
amino sources [4-(trimethylsilyl)morpholine], hexamethyl-
disilazane and heptamethyldisilazane were employed,
affording the corresponding products 6a-c in 61-85% yields,
respectively. Notably, when hexamethydisilazane was used as
the amino source, the reaction generated NH,-substituted
species in situ and the primary amine product 6b was obtained
successfully in a yield of 61%. Unfortunately, the results indi-
cated that amino sources, such as aniline, benzylamine, and
N-methylaniline, are not compatible with this protocol, as no
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Scheme 4 Introduction of diverse amino functional groups in one-pot
protocol. Reaction conditions: S3 (2.0 mmol, 1.0 equiv.), nitrogen source
(1.5 equiv.), KF (0.1 equiv.), ACN (10 mL), rt, 2 h; then 2a (2.0 mmol),
PPhz, 70 °C, 2 h. ?EtOH (1.5 equiv.) was added.
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desired products were detected in all cases (see SI, Scheme S1).
This unfavorable outcome could plausibly be ascribed to the
instability of the corresponding amino-iodine(ur) intermediates
under the standard reaction conditions.

To gain insight into the reaction mechanism, control
experiments were carried out to explore the possible pathway
of this a-ketoamidation reaction (Scheme 5a). First, the reac-
tion proceeded smoothly in the presence of radical scavengers
such as TEMPO and BHT (Scheme 5a, I), indicating that a
radical pathway was unlikely. Strickingly, when DMI and PPh;,
were reacted in the absence of glyoxylic acids, a dimethyl-
aminophosphonium Int. 1 could be detected by HRMS, and
2-iodo-N,N-dimethylbenzamide 7a was isolated in a 76% yield.
This result suggested that, in the absence of glyoxylic acid, Int.
1 further reacted with ortho-iodobenzoate Int. 2, which was
derived from the reduction of DMI, giving dimethylbenzamide
7a (Scheme 5a, II). However, in the presence of glyoxylic acids,
the ortho-iodobenzoate preferentially reacted with the sub-
strates to generate the 2-oxo-2-phenylacetate, which sub-
sequently coupled with Int. 1 to afford the desired product 3a.
In addition, ammonium chloride and dimethylamine were
separately reacted with glyoxylic acid in the presence of tri-
phenylphosphine. The experimental results showed that no
desired product was obtained, thereby demonstrating the
unique role of DMI in this transformation (see SI, Scheme S2,
d).

Based on the above experimental results, a plausible
mechanistic pathway was proposed in Scheme 5b. Initially, the
hypervalent iodine(m) reagent DMI reacts with PPh; to gene-
rate a dimethylaminophosphonium Int. 1, together with ortho-
iodobenzoate Int. 2. Subsequently, iodobenzoate Int. 2 acts as
a base to deprotonate acetoacetic acid 2, affording the 2-oxo-2-
phenylacetate Int. 3. This nucleophilic anion then attacks the

(a) Control experiments:

(

)

Standard conditions.

] Me,N——0 Q
OH NMe,
) Radical scavenger
o] (2.0 equiv) o
1, DMI

3a
(1.2 equiv) TEMPO: 82%; BHT: 79%

1
without glyoxylic acids
NMe,

2a

I Me,N—I—0
PPhy, DMF, 70 °C + Int. 2 o
Me,N=PPh, 7a, 76% yield
o 1 with glyoxylic acids
p = int. 1 sa
o detected by HRMS
Int.2
(b) Proposed mechanism:  om
PPh, .
TN - MeN—PPhy e NP O
Me,NCI-—0 o
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° )
)
2
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Scheme 5 Mechanistic reaction

mechanism.

experiments and  proposed
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phosphonium center of Int. 1, releasing the dimethyl anion
Int. 4. The latter species subsequently attacks the carbonyl
carbon, furnishing the desired a-ketoamide 3a along with tri-
phenylphosphine oxide as a byproduct, which was detected by
TLC analysis.

Conclusions

In summary, we have developed a mild and metal-free method
for the preparation of o-ketoamides from glyoxylic acids,
mediated by a DMI/PPh; system via  dimethyl-
aminophosphonium intermediates generated in situ. This
methodology is applicable to the dimethylamination of N(O)-
substituted glyoxylic acid substrates and active drug molecules,
highlighting its potential for synthesizing more complex
a-ketoamide derivatives. The utility of this method is further
demonstrated by the in situ generation of amino-based hyper-
valent iodine(m) reagents, which enable the formation of
diverse o-ketoamides. Broad substrate scope, aerobic con-
ditions, and excellent functional-group tolerance render this
protocol a practical approach for accessing various a-ketoa-
mide derivatives.
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