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ABSTRACT: A novel difluoromethylating reagent was developed via the dehydration condensation between 1,1-difluoroacetone
and N’-methylpicolinohydrazonamide (MPHA). This reagent is suitable for palladium-catalyzed coupling reactions, offering a broad
substrate scope (43 examples) and excellent scalability (gram-scale synthesis), and can be efficiently employed for the modification

of drug molecules to enable the facile synthesis of difluoromethylated

(hetero )arenes. Mechanistic studies indicate that the successful

release of the difluoromethyl radical results from aromatization-driven C—C bond cleavage.

he precise assembly of fluorine-containing compounds is

a key driver fueling progress in pharmaceuticals, agro-
chemicals, and materials science.’ Among them, difluorometh-
yl aromatics, featuring the unique difluoromethyl (CF,H)
group, possess distinct physicochemical properties and
remarkable bioisosteric effects, granting them considerable
application potential.” A prominent example is elenbecestat, an
investigational drug for Alzheimer’s disease (AD), which
successfully incorporates this moiety (Figure la).” Conse-
quently, replacing the original functional groups with the
difluoromethyl group in specific molecules can maintain or
even enhance biological activity, while simultaneously
improving pharmacokinetic properties, offering a promising
path toward the development of eflicient and low-toxicity new-
generation drug candidates.* Nevertheless, the efficient and
precise introduction of difluoromethyl (CF,H) groups remains
a major challenge in organic synthesis.

Conventional strategies, such as the deoxydifluorometh-
ylation of aldehydes or nucleophilic substitutions with halodi-
fluoromethyl reagents, are often plagued by limitations includ-
ing harsh reaction conditions, limited functional group
tolerance, and challenges in controlling regio- and chemo-
selectivity.” In addition, Transition-metal-catalyzed cross-
coupling reactions offer an alternative route for the
difluoromethylation of aromatic rings, yet this strategy largely
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relies on highly reactive metal-based difluoromethyl reagents
(such as (SIPr)Ag(CF,H),° (HF,C),Zn(DMPU),,’
(HF,C),Zn(TMEDA),® nBu,Sn(CF,H)),” which are generally
prone to decomposition and challenging to store. Although
chlorodifluoromethane (CICF,H)'’ and bro-modifluorome-
thane (BrCF,H)'' have been widely reported as precursors of
difluoromethylation, their gaseous nature greatly reduces the
convenience of operation. Moreover, the requirement for
excess ozone to consume CICF,H and BrCF,H presents an
additional drawback."” Collectively, these limitations hinder
the application of such reagents in the late-stage modification
of complex bioactive molecules. It is worth noting that while
recent reports have described the difluoromethylation of aryl
halides utilizing CF,H radicals,"* developing new difluorome-
thylating reagents that feature novel structures, high reactivity
and selectivity, and operational simplicity remains a critical
objective with substantial research and practical value.
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Figure 1. Magic difluoromethyl effect: development of the DDDTP
reagent for a broad range of (hetero)aryl precursors.

Among various radical precursors, ketone derivatives have
garnered significant interest in recent years. Because ketones
are widely present in natural products, developing them into
cost-effective synthetic building blocks for value-added trans-
formations has become a prominent research hotspot."* Over
the past decade, numerous strategies for the efficient activation
of both cyclic and linear ketones have been reported.”
Inspired by the work of Dong'® and Xue'” and their
colleagues, we have developed a novel difluoromethylating
reagent (Figure 1b). This reagent is prepared via dehydration
condensation between commercially available 1,1-difluoroace-
tone and N'-methylpicolinohydrazonamide (MPHA). Notably,
the reagent is solid, which facilitates handling, storage, and
scale-up. In preliminary experiments, it efficiently mediated the
palladium-catalyzed difluoromethylation of diverse substrates,
including (hetero)aryl bromides, iodides, phenolic derivatives,
and aryl sulfonium salts, thereby establishing a novel synthetic
route to difluoromethylated aromatic hydrocarbons (Figure
Ic).

We commenced this study by using 2-(5-(difluoromethyl)-
1,5-dimethyl-4,5-dihydro-1H-1,2,4-triazol-3-yl) pyridine
(DDDTP) 1 and 4-bromo-1,1’-biphenyl 2a as model
substrates for difluoromethylarene synthesis. After extensive
investigation of the reaction conditions (see the SI for details),
we found that a mixture of 1 and 2a in the presence of XPhos
Pd G2 as the palladium catalyst, XPhos as the ligand, sodium
carbonate as the base, and potassium bromide as an additive in
N,N-dimethylformamide (DMF) at 110 °C for 12 h, afforded
the desired product difluoromethylarene 3 in 82% isolated
yield (Table 1, entry 1). When other solvents are used,
including dioxane, acetonitrile (MeCN), dimethyl sulfoxide
(DMSO) and N-methylpyrrolidone (NMP), the reaction
efficiency is greatly reduced (Table 1, entries 2—S5). Other
bases, such as potassium carbonate (K,COj;), 2-tert-butyl-
1,1,3,3-tetramethylguanidine (BTMG), and potassium hydrox-
ide (KOH), can also promote this transformation, but all
proved inferior to sodium carbonate (Table 1, entries 6—8).
The evaluation of temperature effects revealed that the

Table 1. Optimization of the Reaction Conditions”

Al,03 acidic
1,1-difluoroacetone

Py, 1-AdCO,H, Dioxane
@

N HN-Me standard conditions

SO T
N~ch, Na,CO; (2.0 equiv.)
HaC’ FoH KBr (2.0 equiv.), DMF (1.5 mL)
1,0.12 mmol 2a, 0.1 mmol Ar, 110°C, 12h 3
entry change from optimal conditions yield (%)

1 none 89 (82)"
2 Dioxane instead of DMF 26

3 MeCN instead of DMF 13

4 DMSO instead of DMF 44

S NMP instead of DMF 33

6 K,CO; instead of Na,CO; 77

7 BTMG instead of Na,CO; 61

8 KOH instead of Na,CO, 49

9 130 °C instead of 110 °C 66

10 90 °C instead of 110 °C 78

11 70 °C instead of 110 °C trace

12 no XPhos Pd G2 (10 mol %) N.D.

13 no Na,CO, N.D.

14 no KBr 72

15 no Xphos S3

“Standard conditions: 1 (0.12 mmol), 2 (0.1 mmol), XPhos (12 mol
%), XPhos Pd G2 (10 mol %), Na,CO; (0.2 mmol), KBr (0.2 mmol),
in DMF (1.5 mL) at 110 °C for 12h under Ar atmosphere. Yields
were determined by 1H NMR spectroscopy with dibromomethane as
the internal standard. “Isolated yield on 0.2 mmol scale. N.D. = not
detected.

reaction was sensitive to temperature changes. When the
temperature was increased to 130 °C, the yield of the target
product decreased significantly, which was likely due to catalyst
deactivation from the formation of palladium black at high
temperature (Table 1, entry 9). In contrast, when the
temperature was reduced to 90 °C, only a slight decrease in
yield was observed (Table 1, entry 10). A further reduction to
70 °C almost completely suppressed the model reaction
(Table 1, entry 11). Additional control experiments confirmed
that both the palladium catalyst and sodium carbonate were
essential for the reaction (Table 1, entries 12 and 13). In
contrast, the absence of the additive or the ligand led to lower
yields of the target product, 72% and $3% respectively (Table
1, entries 14 and 15).

With the optimal reaction conditions established (Table 1,
entry 1), we proceeded to investigate the substrate scope and
limitations of the difluoromethylation of aryl bromides. As
shown in Scheme 1, the developed method proved effective for
synthesizing a series of aryl difluoromethylated compounds.
We began by systematically evaluating monosubstituted aryl
bromides to probe both electronic and steric effects. The
results demonstrate the robustness of this transformation
toward both electron-rich and electron-deficient arenes.
Regardless of whether the substrates bore strong electron-
donating groups (such as methoxy (8)) or strong electron-
withdrawing groups (such as chloro (7), cyano (10), and the
medicinally important trifluoromethoxy (9)) the reactions
afforded the target products efficiently. These results point to
the insensitivity of the catalytic process to variations in the
aromatic ring’s electron density. Furthermore, the method
demonstrated excellent adaptability against steric effects. Even
with increasingly bulky substituents, from hydrogen (3) and
ethyl (4) to the highly hindered tert-butyl (5) and long-chain
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Scheme 1. Substrate Scope of (Hetero)aryl Halides and Iodides®™
7\ i
<\’  XPhos Pd G2 (10 mol%) ! P’
N= XPhos (12 mol? CFH |
L+ Mey 05 (12 mo /_") ak : Pr Py
~NH Na,COj3 (2.0 equiv.) : HN—Pd—CI
HF,C™ ‘Me KBr (2.0 equiv.)
X=Brorl DMF (2.0 mL), 110°C, 12h 3-45 : O O
: XPhos Pd G2
- Aryl halides
CFH ! CF,H CF,H
72 : /CFQH 72 72 /CFzH
3,R=H, 82% N ) R-ELemw 14, 65% 15, 49%
4, R=Et, 76% : ' p. o1
5 R='Bu, 71% : CF2H
' ' ! CF,H CF,H CF,H ~CF2
6, R ="CsH,5, 69% | -k e 7
7,R=Cl, 77% :
8, R=0Me, 65% |
_ ! 19, X = CHj, 79%
9,R=0CF3 61% ! 16, 35% 17, 70% 18, 66% 20, X = Ph 373“/ ’
10, R = CN, 55% : AR
‘ _CFH
_CFH ACFaH _CFH
21,63% 23,X=C,57% 25,X =0, 66%
22,72% 24,X = N, 45% 26, X =S, 71%
CF,H CFH CF,H CF,H
_CFaH ki 7 o2 o2
27, 80% 28, 42% 29,67% 30, 65% 31,56%
56%¢ 41%°
CF,H
7~ 2/
CF,H
_CFH ~CF2 _CFH _CFH
32, 84%°¢ 33,80% 34,79% 35,83% 36,78%
Modification of I I
_CFH ACFaH
—CF,H
from OLED from Gemfibrozil from L-Menthol
37,75% 38, 68% 39, 81%, d.r.>20:1
_CFH
CFaH
e H
from Diacetionefructose from Ibuprofen from Camphanic acid
40, 64%, d.r.>20:1 41,76% 42,79%
CF,H
7”2 _CFH
\CFZH

from Naproxen
43, 64%, d.r.>20:1

from Probenecid

44,73%

from Indometacin
45,51%

“All yields isolated on 0.2 mmol scale. Conditions: 2-(5-(difluoromethyl)-1,5-dimethyl-4,5-dihydro-1H-1,2,4-triazol-3-yl)pyridine (1.2 equiv), aryl
bromides (1.0 equiv), XPhos Pd G2 (10 mol %), XPhos (12 mol %), Na,COj (2.0 equiv) and KBr (2.0 equiv) in DMF (2.0 mL) was stirred at 110
°C for 12 h under an Ar atmosphere. “Isolated yield. At 90 °C. “Aryl iodides (1.0 equiv) was used. “Aryl chlorides (1.0 equiv) was used.

alkyl (6) groups, the reaction proved effective. This
pronounced steric tolerance underscores the method’s high
potential for the late-stage modification of structurally complex
molecules. Encouraged by the above findings, we expanded the
substrate scope to investigate its compatibility toward a variety
of common functional groups. The substrates examined
included unsubstituted bromobenzene (11) as well as those
bearing ester (14), methylthio (15), nitro (16), methylsulfonyl

(17), benzyloxy (18), silyl (19, 20), and carbazole (22)
groups. Furthermore, the protocol was also compatible with
ketone-containing substrates (12, 27), even those incorporat-
ing challenging structural motifs such as a highly strained
cyclopropane (13) or a Boc-protected amino group (21). The
catalytic system was successfully applied to structurally
demanding bromoarenes, including those with a bulky
naphthalene core (23) and a spiro carbon center (36); the
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corresponding products were isolated in yields of 57% and
78%, respectively. Heteroaromatic rings are prevalent in drugs
and functional materials, but their unique coordination
properties and electronic characteristics often pose challenges
in metal-catalyzed reactions.'® Encouragingly, this method was
efficiently applied to quinoline substrates (24), overcoming
common issues such as catalyst deactivation. Furthermore, the
reaction was also successfully extended to other heterocyclic
frameworks including benzofuran, benzothiophene, and
thiochromanone (25, 26, and 28). Multisubstituted and
fused-ring bromoarenes were also viable substrates, affording
the target products in moderate to excellent yields (29-31,
33—35). Driven by these results, we want to know whether this
strategy is suitable for difluoromethylation of complex
molecules. 9-(4-broMophenyl)-10-phenylanthracene, a mole-
cule that is widely used in fluorescent dyes and electronic
devices, achieved an excellent yield (37). Substrates derived
from common natural extracts, such as L-menthol, diacetione-
fructose, and camphanic acid, afforded moderate yields in the
difluoromethylation reaction (39, 40 and 42). Furthermore,
derivatives of nonsteroidal anti-inflammatory drugs (NSAIDs),
including ibuprofen, naproxen, and indomethacin, were
efficiently converted (41, 43 and 45). The lipid-lowering
drug gemfibrozil was also effectively difluoromethylated (38).
Notably, derivatives of probenecid—which is a sulfonamide
uricosuric agent for chronic gout—underwent the reaction
efficiently, affording the product in up to 73% yield (44). The
successful difluoromethylation of these diverse substrates
highlights the broad utility of the palladium catalytic system
and its significant potential for applications across materials
science, natural products, and pharmaceutical development.
Next, we applied the developed difluoromethylation
protocol to several key scenarios. As shown in Scheme 2,

Scheme 2. Synthetic Applications

gram-scale synthesis:

¢\
NN XPhos Pd G2 (10 mol%)
Mo~y = XPhos (12 mol%) CFH
NH
Na;COj (2.0 equiv.)
HF2C™ Me KBr (2.0 equiv.)
DMF (20 mL), 110°C, 24h
10 mmol scale 1.2 equiv. (20mi). 110%C 3,1.565 g, 77%
one-pot two-step reactions:
Py
MPHA N= CFH
2 1-AdCO,H, Al,0; acidic Mex = 0.2 mmol 7
—_— NH -
HiC™ "CRH 4 4 dioxane,90°C HEC Me standard conditions
0.24 mmol in vacuo 1o purifiiation step 2 "
step 1 3,36%
directly from ionalized arene:
DDDTP (1.2 equiv.)
DBT(
© XPhos Pd G2 (10 mol%) CRH
Tf,0, DCM XPhos (12 mol%) r
— >
dibenzothiophenylation NazCO0s3 (2.0 equiv.)
2ai KBr (2.0 equiv.) 3, 76%
DMF (2.0 mL), 110°C, 12h
yl as a bioi: i for the hydroxyl group:
DDDTP (1.2 equiv.)
Pyridine XPhos Pd G2 (10 mol%) CFoH
T1,0, DCM XPhos (12 mol%) e
— > — e

Na,COy3 (2.0 equiv.)
KBr (2.0 equiv.) 3,51%
DMF (2.0 mL), 110°C, 12h '

Trifluoromethanesulfonation

initially, a gram-scale reaction was conducted under the
optimized conditions, affording the product in 77% yield and
demonstrating the excellent scalability of the method.
Subsequently, to validate its utility in late-stage functionaliza-
tion, a one-pot, two-step procedure was successfully applied to
bromoarenes, yielding the desired products in 36% yield. To
further broaden the substrate scope, a direct C—H
difluoromethylation strategy for arenes was developed. Using
this approach, biphenyl was converted to the key arylsulfonium

salt 2ai via reaction with trifluoromethanesulfonic anhydride
and dibenzothiophene oxide (DBTO). Furthermore, the
difluoromethyl group, a modification known to maintain
efficacy while significantly enhancing metabolic resistance
and thereby extending in vivo half-life, serves as a critical
bioisostere of the hydroxyl group.'” Based on this principle, we
designed a derivatization route for 4-Phenylphenol. Specifi-
cally, 4-phenylphenol reacted with trifluoromethanesulfonic
anhydride to obtain intermediate 2aj, which was difluorome-
thylated with DDDTP under standard conditions and
successfully provided the target compound in good yield.

A series of control experiments were performed to probe the
mechanism of the palladium-catalyzed deacetylation-difluor-
oarylation reaction, as shown in Scheme 3. First, radical

Scheme 3. Mechanistic Experiments

a) radical trapping experiments:

2.0 equiv. TEMPO >(j<
N

standard Sgndi!ions 3 o+ 6

7\ HF,C*
NN 0% detected by GC-MS
. Me~\ ™~
7N Ph
HF2C™ 'Me 2.0 equinv. o CFaH
. 8 n
1,1-Diphenylethylene 3 * Ph)\’
2a, 0.2 mmol 1, 0.24 mmol standard conditions 0% 46, 37%
detected by GC-MS
. N and NMR
b) radical clock experiment:
7\ CF,H
N: =N standard conditions
Me~y ™~ . — % ———> 3 +
+ S NH
HF2C e 0% 47,13%
2a, 0.2 mmol 1, 0.24 mmol 0.4 mmol detec;i(; l,i}/MiC-MS
c) petition experiments:
¢\
= CFoH CFoH
+ Me-~ N= N standard conditions d 7
NG _NH +
HF,C” "Me
R = SO,Me . .
=0Bn 1,0.24 mmol 17, 41% 18, 36%

trapping experiments were conducted separately using
TEMPO (2,2,6,6-tetramethylpiperidinooxy) and DPE (1,1-
diphenylethylene) to assess the involvement of difluoromethyl
radicals. Under the standard conditions, the formation of
product 3 was suppressed in both cases, and GC-MS analysis
identified the corresponding difluoromethyl radical adducts,
confirming the presence of these radical species within the
catalytic system. Furthermore, a radical clock experiment
employing (1-cyclopropylvinyl)benzene under the standard
conditions led to the detection of the ring-opened product, 4-
(2,2-difluoroethyl)-1,2-dihydronaphthalene, by GC-MS. This
result provides strong evidence for the generation of a free
difluoromethyl radical intermediate during catalysis. We then
turned to intermolecular competition experiments to evaluate
the influence of substituent electronic effects on reaction
efficiency. This investigation was prompted by our initial
studies, which showed that products 17 and 18 were obtained
in comparable yields. Consequently, a direct competition
between the electron-deficient 1-bromo-4-(methylsulfonyl)-
benzene and the electron-rich 1-(benzyloxy)-4-bromobenzene
was carried out. The reaction afforded the two products in a
nearly 1:1 ratio (17:18 = 53:47). This equimolar distribution
indicates the absence of a significant electronic bias and
demonstrates that the reaction outcome is largely independent
of the substituents’ electronic properties.
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Based on the above mechanism research and previous
literature reports,” a possible palladium catalytic cycling
pathway has been proposed, as shown in Scheme 4. This

Scheme 4. Proposed Mechanism

/Pr
NayCO3 Pr PCy,
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Na2003
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Me\NNz(,
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Me‘NYN

N‘(
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Me

aromatization-driven
C-C bond cleavage

catalytic cycle is initiated by the formation of an LnPd(0)
species via a C(sp?)—N bond reductive elimination, a process
promoted by the deprotonation of precatalyst XPhos Pd G2
with sodium carbonate. The A (LnPd(II)) is generated in situ
via oxidative addition of LnPd(0) to the aryl halide.
Concurrently, deprotonation of DDDTP with sodium
carbonate affords the corresponding triazole anion,'” which
undergoes transmetalation with A (LnPd(II) to form B
(LnPd(11)). The decomposition of B (LnPd(II)) yields C
(LnPd(1)), a free difluoromethyl radical, and the aromatic
byproduct 2-(1,5-dimethyl-1H-1,2,4-triazol-3-yl)pyridine, a
selectivity driven by the higher thermodynamic stability of
the difluoromethyl radical relative to methyl radical, which
renders C—CF,H bond cleavage thermodynamically more
favorable. The resulting radical is captured by C (LnPd(I)) to
give D (LnPd(II)). Finally, reductive elimination from D
(LnPd(II)) yields the difluoromethylarene product and
regenerates the LnPd(0) catalyst, thereby closing the catalytic
cycle. DFT calculations provide robust support for the
proposed reaction mechanism (section 8.1 — 8.4, Supporting
Information). However, the reaction pathway involving direct
oxidation of the triazolyl anion by Ln-Pd(I) or Ln-Pd(II)
cannot be entirely excluded (section 8.5, Supporting
Information).'?

In summary, we developed a bench-stable radical difluor-
omethylating reagent based on the dehydration condensation
between commercially available difluoroacetone and MPHA.
This reagent exhibited excellent substrate compatibility under
a palladium-catalyzed system, including (hetero)aryl bromides,
chlorides, iodides, phenolic derivatives, and aryl sulfonium
salts. It is worth noting that this protocol could be scaled up to
the gram scale and was successfully applied to the late-stage
functionalization of complex natural products and drug
molecules. DFT calculations revealed that the release of the
difluoromethyl radical proceeds through a single-electron
transfer subsequent to the deprotonation of DDDTP, which

subsequently triggers C—C bond cleavage driven by aromati-
zation. Our laboratory is currently exploring further
applications of these reagents to broaden their scope in
diverse cross-coupling reactions.
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