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ABSTRACT: Csp3−Cl bonds are essential as diversification
handles in organic synthesis and are found in many natural
products and bioactive molecules. In this work, we introduce a
general protocol for the selective chlorination of aryl cyclo-
propanes, olefins, and activated C−H bonds using direct photo-
excitation of Willgerodt-type reagents to generate chlorine radicals.
Preliminary results for an iodine(I/III) catalytic process starting
from abundant chloride salts are also presented. Furthermore, a
one-pot protocol has been developed for the telescoped
functionalization of benzylic chlorides with C-, N-, O-, and S-nucleophiles. Especially, this approach provides a platform to
access 1,1-diaryl motifs, which are important building blocks for the synthesis of pharmacophores.
KEYWORDS: chlorination, cyclopropanes, hypervalent iodine, direct excitation, photocatalysis

Chlorinated compounds are found in various natural products
such as Atpenin A5 (1), Perforenone B (2), or Clionastatin B
(3); active pharmaceutical ingredients such as Quinfamide (4)
or Chloramphenicol (5); and are essential intermediates used
in chemical manufacturing (Scheme 1A).1 Chlorine-based
chemistry has been used in the synthesis of around 20% of
small-molecule drugs and 30% of agrochemical products.1a

Among organochlorides, chloroalkanes serve as important
synthetic precursors to access several functional groups,
including alcohols, amines, and thioethers.1 The classical
methods for synthesizing chloroalkanes involve electrophilic
addition of formal [Cl+] intermediates to an olefin (Scheme
1B, eq 1),2 nucleophilic substitution with chlorides [Cl−]
(Scheme 1B, eq 2),3 and the use of chlorine radicals [Cl•]
(Scheme 1B, eq 3). As they are difficult to control, chlorine
radicals have long been regarded as less attractive for fine
chemical synthesis. However, recent progress in radical
chemistry has rekindled interest in this approach.4 Different
transformations have been developed, including radical
additions to olefins4a,b hydrogen atom transfer processes
onto Csp3−H bonds,5,6 or oxidative cleavage of C−C σ
bonds.7

With an emphasis on sustainable chemistry in the past few
decades, several photocatalytic protocols have been developed
to convert electrophilic or nucleophilic chlorine sources to
chlorine radicals.4,5,6,7,8,9 These methods include reductive
activation,5d oxidative activation,5b,c,e,i,8 and, more recently,
ligand-to-metal charge transfer (LMCT) processes for the
homolytic cleavage of metal chlorides.4b,9

Hypervalent iodine reagents (HIRs) have similar properties
to heavy metals in organic transformations.10 In particular, the
homolytic fission of the I−Cl bond can generate chlorine

radicals analogous to LMCT processes (Scheme 1B, eq 4).
Indeed, the photolysis of HIRs to give chlorine radicals has
been described using iodine trichloride ICl3,

11 Willgerodt
reagent (6a)12 and recently chlorinated cyclic HIRs.13 Among
them, 6a stands out as it is more stable and easier to handle
than ICl3 and also more atom-economic than cyclic HIRs. 6a
has been extensively applied for the electrophilic chlorination
of Csp2 centers, such as olefins or aromatic rings (Scheme 1C,
eq 5),14 as well as for the oxidation of alcohols15 and
thioethers.16 These reactions are potentially competitive with
radical chlorination, suggesting that 6a would not be a good
choice to favor this pathway. We hypothesized, however, that
the irradiation of 6a would lead to rapid homolytic fission of
the I−Cl bond, producing chlorine radicals fast enough to
suppress electrophilic chlorination pathways. As a result, highly
selective radical chlorination of alkane C−H and cyclopropane
C−C bonds to form Csp3−Cl bonds could be achievable even
in the presence of arenes or alcohols (Scheme 1C, eq 6).
Although the use of 6a for chlorination under photochemical
conditions was initially introduced by Banks,12a it has been
applied only to the chlorination of steroids by Breslow, Wicha,
and coworkers in the 70s and 80s,17 and the potential of this
approach in other chlorination reactions has not been further
explored. Given that reagent 6a can be easily accessed via the
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reaction of chloride anions with iodosylbenzene,18 it can
potentially be generated in situ using a catalytic amount of
iodobenzene in the presence of an external oxidant. Gilmour
and Wirth recently reported catalytic iodine(I/III) chlorina-
tions from CsCl or TMSCl, focusing on the electrophilic
chlorination of olefins.14b,f A radical approach would allow us
to target not only olefins but also cyclopropanes C−C and
alkanes C−H bonds.
Herein, we report the use of 6a for the formation of various

Csp3−Cl bonds, including 1,3-, 1,2-, and C−H-chlorinated
products starting from cyclopropanes, alkenes, and alkanes,
respectively (Scheme 1D). The most efficient protocol was
established using a stoichiometric amount of 6a, but
preliminary results for a catalytic method were also obtained.
Additionally, we introduce a one-pot process to further
functionalize benzylic chlorides with aryl, N-, O-, and S-
nucleophiles, providing a fast and modular approach to 1,1-
diaryl compounds, important building blocks in the synthesis
of various pharmacophores.19,20 Especially, 1,1-diphenyl-3-
chloropropanes were reported as the precursors to synthesize a
wide range of commercial drugs such as Prozapine (7a),
Fenpiprane (7b), Diisopromine (7c), or Fendiline (7d)
(Scheme 1E).20

We started our investigation by irradiating a mixture of
phenylcyclopropane (8a) and chlorobenziodoxolone reagent

6b, which we had previously used as a chlorine radical source
in the oxidative activation of cyclopropanes (Scheme 2A).13c

After 4 h of irradiation with three equivalents of 6b, we
observed an 86% NMR yield of the 1,3-dichlorinated product
9a. However, further attempts to improve the yield by
increasing the amount of 6b or prolonging the reaction time
were unsuccessful. We then examined Willgerodt-type reagents
6a,c−e. Interestingly, a quantitative yield of 9a was formed
after 15 min of irradiation, and only 1.2 equiv of 6a were
needed to achieve complete conversion. In contrast to
electrophilic chlorination,14b the electronic structure of the
aromatic ring did not affect the reactivity of 6, giving 9a
quantitatively with either electron-rich (6c) or electron-poor
reagents (6d−e). Further screening of other common solid-
nitrogen-based chlorinating reagents 6f−h did not deliver the
product, demonstrating the unique properties of the Will-
gerodt-type reagents under photolysis. Further screening of
solvents showed that chloroform, acetonitrile, and ethyl acetate
could also be used with a slight decrease in yield. The reaction
was less efficient in acetone, methanol, water/acetonitrile
mixtures, or THF. Under blue LED irradiation (λ = 450, 440,
or 427 nm), the reaction in DCM proceeded to full
conversion, yielding the product quantitatively. In comparison,
replacing the light source with a green LED strip (525 nm)
resulted in only trace amounts of the product. This result is in

Scheme 1. (A) Natural Products and Drugs Containing Csp3−Cl Bonds. (B) General Strategy to Form Csp3−Cl Bonds. (C)
Divergent Reactivity of Willgerodt Reagent (6a) to Give Cl+ or Cl•. (D) Our Work on Photoactivation of Willgerodt Reagent
(6a). (E) Synthesis of Amine Drugs from Diaryl Chlorides
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good accordance with the reported absorption spectra of 6a,
showing significant absorbance up to 500 nm.12c

To our delight, the same conditions could be applied for the
1,2-chlorination of vinyl naphthalene 10a and the C−H
chlorination of ethyl arene 12a, delivering 76% of 11a and 86%
of 13a (Scheme 2B). In the case of 10a and 12a, 1.5 equiv of
6a were required to reach complete conversion. Performing a
control experiment in the dark for the chlorination of 8a for 1
h resulted in 27% of aromatic chlorination 9a1, 15% of 9a, and
54% of recovered cyclopropane 8a. When heated to 40 °C in
the dark, 9a was obtained in 12% yield together with 9a1,
whereas irradiating at 0 °C still led to the formation of 11a in
95% NMR yield. Only 7% of 11a was observed starting from
10a, and no product was detected with 12a. These results
demonstrated the dominance and higher efficiency of the
radical pathway under irradiation. Furthermore, the dichlori-
nation of 8a did not take place in the presence of TEMPO, and
a TEMPO chlorination adduct was detected by mass
spectroscopy. These results support a speculative mechanism
involving the formation of a benzylic radical, probably via an
intermediate arylcyclopropyl radical cation (see Supporting
Information Section S9 for details).

We consistently observed a large amount of iodobenzene
(14) remaining after the irradiation of 6a. Therefore, we
envisioned that a catalytic process could be achieved by adding
chlorine salt and an oxidant to regenerate 6a (Scheme 2C).
Following a protocol reported by Gilmour and coworkers,14b

we screened reactions in parallel with different oxidants,
including Selectfluor, NFSI, oxone, and chlorine salts (LiCl,
KCl, CsCl) under visible-light irradiation with 20 mol %
iodobenzene (14) as the catalyst. We observed the formation
of products 9a, 11a, and 13a when either Selectfluor or Oxone
was used as the oxidant. NFSI did not result in product
formation for any of the three substrates. We found that the
best conditions for C−C chlorination were using CsCl with
Selectfluor as the oxidant, yielding 68% product 9a. Oxone
proved to be the best oxidant for chlorination of 10a and 12a,
delivering 38% 11a and 79% 13a. However, several back-
ground reactions were observed and affected the reaction
efficiency, such as fluorination in the case of 8a, polymerization
of 10a, and aromatic chlorination on 12a. Overall, the
possibility of performing chlorinations directly from chloride
salts under iodine(I/III) photocatalysis has been demonstra-
ted. Nevertheless, the use of stoichiometric 6a still delivered

Scheme 2. Reaction Optimization and Control Experiments Using 450 nm Blue LED�30Wa

aNMR yield is reported using CH2Br2 as an internal standard. n.r. = no reaction. *NMR yields when performing reactions in the dark for 1 h.
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better results without side reactions and required a shorter
reaction time than the catalytic protocol. Given that 6a is an
easily accessible reagent from iodobenzene (14),18 we decided
to continue to explore the substrate scope using stoichiometric
amounts of 6a.
The substrate scope of aryl cyclopropanes 8 for the 1,3-

chlorination is shown in Scheme 3A. The desired products
were obtained cleanly, and no aromatic chlorination was
observed regardless of the electronic properties of the phenyl
ring (products 9a−h). The isolated yield of 9a was only 80%
compared to the quantitative NMR yield due to its instability
during column chromatography. We encountered similar issues
with products 9b and 9c. Product 9b was even fully hydrolyzed
by column chromatography to give the corresponding benzylic
alcohol in 51% yield. The reaction tolerated various
functionalities, including a bromo (9d), a cyanide (9e), an

acetyl (9f), a pinacol boronate (9g), and a naphthyl group
(9h), with isolated yields ranging from 63% to 91%. A
diphenyl-substituted cyclopropane resulted in a 79% yield of
product 9i. A donor−acceptor cyclopropane with a diester
functional group delivered 68% of products 9j. Interestingly,
the reaction tolerated a carboxylic acid and a pyridine
derivative, giving 91% yield of 9k and 74% yield of 9l. It has
been reported that pyridines can substitute for chloride on
6a,21 and carboxylic acids are usually incompatible with
reactions involving electrophilic HIRs.22 The products
observed demonstrated that photolysis was fast enough to
promote the radical pathway over other reactions. The
protocol also allowed the late-stage chlorination of heterocyclic
bioactive molecules, yielding chlorinated products 9m, derived
from the drug Lesinurad, in 42% yield and 9n in 59% yield. It

Scheme 3. Substrate Scope of Chlorination Using 450 nm Blue LED�30Wi

iYields in brackets are NMR yields with CH2Br2 as an internal standard. Scope at 0.2 mmol scale. a1.5 equiv of 6a. bAt 1 mmol scale. cThe
chlorinated compound was hydrolyzed at the benzylic position on reverse-phase chromatography, and the corresponding alcohol was isolated. d2.0
equiv of 6a. e2.5 equiv of 6a. f4.0 equiv of 6a.
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is worth mentioning that the thioether in 9m was tolerated,
even if it could be sensitive to oxidation.
We then explored the substrate scope of the olefins (Scheme

3B). In general, styrene derivatives having an electron-donating
group (products 11a,b) gave lower yields than those with an
electron-withdrawing group (11c,d), likely due to instability of
the products during column chromatography. 1,1-Disubsti-

tuted or 1,2- disubstituted styrene derivatives delivered 1,2-
dichlorination products in high yields (11e: 93%, 11f: 71%,
11g: 80%). Despite having opposite electronic properties, both
11f and 11g can be obtained in good yields, demonstrating the
generality of radical chlorination compared to classical
electrophilic chlorination. The protocol was also successfully
applied to nonactivated olefins (products 11h−j). In the case

Scheme 4. Two-Step Protocol for Benzylic Functionalizationa

aScope on 0.2 mmol scale using 450 nm Blue LED�30W. a0.5 equiv of FeCl3. b1.0 equiv of FeCl3. *72 h of reaction.
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of allyl benzene, an ipso rearrangement was observed, giving a
5:1 mixture of 11h1 and 11h2 in 71% yield. Product 11i was
isolated in 79% yield starting from 4-phenyl-1-butene.
Although it was reported that 6a can be used as an efficient
reagent to oxidize alcohols,15 the reaction shows good
tolerance to both alcohols and amines, yielding 74% of
product 11j starting from the drug Oxprenolol.
Further exploration of the substrate scope for C−H

chlorination revealed excellent yields with 1-bromo-4-ethyl-
benzene and ethylbenzene (products 13a and 13b) (Scheme
3C). When starting from an aryl cyclobutane, we obtained C−
H functionalization instead of C−C cleavage, resulting in
cyclobutyl alcohol 13c after isolation by reverse-phase column
chromatography. We were also able to afford C−H
chlorination of α-carbonyl C−H bonds, yielding 93% of
isolated product 13d, although four equivalents of 6a were
necessary to complete the reaction. Starting from the substrate
having both secondary benzylic and α-carbonyl C−H bonds,
13e was isolated as the major product. Only a trace amount of
benzylic chlorination was observed in the crude mixture.
Interestingly, we obtained product 13f in 64% yield without
chlorination of the acetyl group, likely due to the unfavorable
formation of a primary radical on the acetyl group.23,24 The
protocol was successful in the case of Benzbromarone, giving
43% yield of product 13g. C−H chlorination products can also
be obtained from cyclic substrates such as α-tetralone and the
drug ibuprofen (see Supporting Information).
The simplicity of the protocol allowed us to use benzylic

chlorides as intermediates for a telescoped functionalization
(Scheme 4A). We focused on 1,1-diaryl motifs, which are
frequently encountered in bioactive molecules (Scheme
1E).19,20 Following modified reported conditions for Frie-
del−Crafts arylation,25 we successfully performed a one-pot
chlorination/arylation sequence, resulting in 1,1-diaryl-3-
chloro scaffolds 15 starting from cyclopropanes 8. The
nucleophilic substitution happened at room temperature in
the presence of iron(III) chloride25 and a base, and purification
of the chlorinated intermediate was not required. Exclusive
substitution at the benzylic position, better suited to stabilizing
positive charges, was observed. Cyclopropane 8a was
converted to 15a in 77% yield after two steps. The reaction
was successful for both bromo- and boron-substituted
substrates (products 15b,c). However, the nucleophilic
substitution is not efficient with cyclopropanes bearing
electron-withdrawing groups, as exemplified by product 15d
obtained in only 26% yield, likely due to the difficulty of
forming the benzylic carbocation. Using phenol as a
nucleophile exclusively delivered aromatic substitution over
O-alkylation, giving 52% yield of 15f as a para/ortho mixture in
a 7:1 ratio. Products 15g and 15h were obtained in 76% and
66% yields, respectively, using 1,3-benzodioxole and benzo-
thiophene as nucleophiles. Arylation product 15i was obtained
in 45% yield starting from Indomethacin methyl ester. The
drugs Nimesulide and Estrone can also be used for aromatic
substitution (products 15j and 15k), demonstrating the
possibility for late-stage functionalization of bioactive com-
pounds. We also explored the same reaction conditions with
sulfonamides as nucleophiles, obtaining good yields from para-
methoxyphenyl sulfonamide (product 15l, 75%) and the drug
Celecoxib (15m, 70%). In this case, one equivalent of iron
chloride was required to accelerate the reaction. Alcohol and
thiol nucleophiles can also be used under the same reaction
conditions, giving products 15n−p in 65−74% yield. Addi-

tionally, C−H arylation and 1,2-chloro-arylation of styrene
derivatives can be achieved, yielding 61% of product 15q and
60% of product 15r.
During scope exploration, we often noticed the presence of a

byproduct resulting from benzylic arylation with iodobenzene
14. This suggests the possibility of reusing 14 as a substrate in
the C−C bond-forming step. Since 14 has low reactivity in
Friedel−Crafts-type arylation, we envisaged the use of a nickel-
catalyzed reductive coupling of 14 with the benzylic chloride
intermediate to give a 1,1-diaryl scaffold in an atom-economic
manner (Scheme 4B). Following modified reported con-
ditions26 (see SI for detailed optimization), we carried out the
reductive coupling directly from the concentrated crude
mixture after ring-opening chlorination. After two steps, we
successfully obtained chloro-arylation products 16a−d with
yields ranging from 49% to 61%. This approach is suitable for
both electron-poor and electron-rich aromatic partners, making
it complementary to the Friedel−Crafts-type reaction.
We expected that 1,3-chlorinated compounds could also

serve as dielectrophilic intermediates (Scheme 4C). A double
substitution was conducted with sodium sulfonate and sodium
azide, resulting in a 57% yield of disulfonate 17a and 63% yield
of diazidation product 17b over two steps. Lastly, we used the
same method to perform a telescoped C−H benzylic
functionalization with azide and morpholine nucleophiles,
producing C−H amination products 18a−c (Scheme 4D). All
of the reactions were conducted without purification of the
chlorinated intermediates, demonstrating the practicability of
our method.
In conclusion, we have developed a general protocol for

chlorinating cyclopropanes, olefins, and activated C−H bonds
using direct photoexcitation of the Willgerodt reagent (6a).
The conditions are mild, and the reaction is practical to set up,
with a wide range of functional groups tolerated. Additionally,
we demonstrated that photomediated chlorination using
Iodine(I/III) catalysis is possible, which serves as a
complementary approach to the stoichiometric use of the
Willgerodt reagent (6a). Taking advantage of the easily
accessible benzylic chlorides, we have developed a one-pot
protocol for further substitution with C, N, O, and S
nucleophiles, and for repurposing the aryl iodide byproduct
in a reductive cross-coupling. Our work provides a practical
approach to functionalize cyclopropanes, olefins, and activated
C−H bonds via the formation of organo-chlorine intermedi-
ates, and we believe it will, therefore, be of interest for
accessing useful building blocks in synthetic and medicinal
chemistry.
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