分析与测试

HPLC 指纹图谱结合 4 种指标含量测定的余甘子质量评价研究

陆礼和1,2,梁建平3,田素梅1,田先娇1,马艳粉1,杨新周*1

(1.德宏师范高等专科学校民族医药研究所,云南 芒市 678400;2 云南省药物研究所,云南 昆明 650300; 3.德宏州科学技术创新中心,云南 芒市 678400)

摘要:建立余甘子(*Phyllanthus emblica* L.) HPLC 指纹图谱,并对 4 种化学成分的含量进行测定,为余甘子是否去核使用提供了一定参考。采用 CAPCELL PAK C_{18} 色谱柱,以乙腈-0.1%磷酸水溶液作为流动相,检测波长 273 nm,流速为 1.0 mL/min,柱温为 30 ℃,进样量 10 μ L,建立了云南 32 个不同产地余甘子的指纹图谱。通过对照品比对并结合光谱分析,对共有峰进行鉴定;借助中药色谱指纹图谱相似度评价系统对 32 批产地的余甘子的图谱进行相似度评价,通过聚类分析(HCA)、主成分分析(PCA)比较两种规格余甘子的差异,寻找差异性成分;并对两种规格余甘子药材 4 种有效成分含量进行对比研究。32 批余甘子指纹图谱中有 17 个共有峰,指认出其中 4 个成分,相似度分析均大于 0.90,对其进行聚类分析,有 3 个主成分,可聚为 6 类。对没食子酸、鞣花酸、柯里拉京、诃子酸定量分析,4 个化学成分在各自范围内线性良好(r>0.999 9),精密度、重复性、稳定性试验均符合定量要求,加标回收率为 98.77%~100.92%,RSD 均小于 2.0% (n=9)。含量测定结果显示,有核余甘子中没食子酸、柯里拉京、鞣花酸的含量均高于无核余甘子,而无核余甘子中河子酸高于有核余甘子。所建立的方法简便、稳定、可靠,HPLC 指纹图谱结合多指标成分含量测定可用于余甘子药材质量评价,为余甘子是否去核使用,提供了一定参考。

关键词:余甘子;高效液相色谱法;含量测定;指纹图谱;聚类分析

中图分类号:R284.1 文献标识码:A 文章编号:0258-3283(2024)11-0081-09

DOI: 10.13822/j.cnki.hxsj.2024.0064

Study on Quality Evaluation of *Phyllanthus emblica* L. by HPLC Fingerprinting Combined with Four Ingredients Content Determination *LU Li-he*^{1,2}, *LIANG Jian-ping*³, *TIAN Su-mei*¹, *TIAN Xian-jiao*¹, *MA Yan-fen*¹, *YANG Xin-zhou* *1 (1.The Research Institute of Ethnic Minority Medicine, Dehong Teachers'College, Mangshi 678400, China; 2.Yunnan Institute of Meteria Medica, Kunming 650300, China; 3.Dehong Science and Technology Innovation Center, Mangshi 678400, China)

Abstract: The HPLC fingerprint of *Phyllanthus emblica* L. (pitted and removed core) was established, and the contents of 4 chemical components were determined simultaneously. It provides some reference for whether to use the *Phyllanthus emblica* L. in removing Core or not. The gradient elution was carried out on a CAPCELL PAK C18 column with a mobile phase of acetonitrile-0.1% phosphoric acid, with detection at 273 nm, with a volume flow rate of 1.0 mL/min, with an injection volume of 10 μL and a column temperature of 30 °C. HPLC fingerprints of *Phyllanthus emblica* L. from thirty-two different origins in Yunnan province were established. The common peaks were identified by comparison and spectral analysis evaluate the similarity of 32 batches of *Phyllanthus emblica* L. from different regions. The chromatographic fingerprint similarity evaluation system was used to evaluate the similarity of 32 batches of *Phyllanthus emblica* L. from different regions in Yunnan province, and the difference between two specifications of *Phyllanthus emblica* L. was compared by cluster analysis (HCA) and principal component analysis (PCA) for finding the different components. The contents of 4 active components of two specifications of *Phyllanthus emblica* L. were compared. There were 17 common peaks in 32 batches of *Phyllanthus emblica* L. fingerprinting, and 4 components were identified,

收稿日期:2024-01-18;网络首发日期:2024-08-20

基金项目:云南省中青年学术和技术带头人后备人才项目(202005AC160061);德宏州科技创新团队项目(2022RC009);云南省中医联合专项面上项目(202001AZ070001-076)。

作者简介:陆礼和(1985-),男,云南腾冲人,硕士,高级工程师,主要研究方向为药物质量控制。

通讯作者:杨新周,E-mail:YXZ1149@126.com。

引用本文:陆礼和,梁建平,田素梅,等. HPLC 指纹图谱结合 4 种指标含量测定的余甘子质量评价研究[J]. 化学试剂, 2024, 46(11):81-89。

and their similarity analysis was greater than 0. 90. Cluster analysis was conducted on these components, and there were 3 principal components, which could be clustered into 6 categories. Quantitative analysis of gallic acid, ellagic acid, corilagine and chebulinic acid showed good linearity ($r \ge 0.9999$) in their respective ranges. Precision, repeatability and stability tests met the quantitative requirements. Standard recoveries ranged from 98.77% to 100.92%, and RSD were all less than 2.0% (n = 9). The results showed that the content of gallic acid, corilagine and ellagic acid in pitted was higher than that in the removed Core *Phyllanthus emblica* L., while the content of chebulinic acid in removed Core was higher than that in the pitted *Phyllanthus emblica* L.. The established method is simple, stable and reliable. The HPLC fingerprint combined with the determination of multi-index components can be used for the quality evaluation of *Phyllanthus emblica* L. which provides a certain reference for whether to use the *Phyllanthus emblica* L. in the removed Core or not.

Key words: Phyllanthus emblica L.; high-performance liquid chromatography; content determination; fingerprint; cluster analysis

余甘子为叶下珠科植物余甘子(Phyllanthus emblica L.)的干燥成熟果实,主要产于云南、广西、江西、广东、福建等省,具有润肺化痰、清热凉血、生津止咳等功效,主治血热血瘀,咳嗽,喉痛等^[1,2]。目前研究表明,余甘子具有抗菌、抗炎、抗氧化特性,以及在增强免疫力和调节血脂方面具有积极作用,为医药与食品行业的创新开发开辟了广阔的应用空间,预示着其在健康促进和疾病预防领域拥有巨大的潜力和广泛的前景^[3]。

目前,2020年版《中国药典》(一部)中余甘 子质量控制的主要方法是薄层鉴别和采用高效液 相色谱(HPLC)法测定没食子酸含量[1]。然而, 仅采用没食子酸对余甘子进行含量控制,专属性 不够强。相关研究表明,在余甘子的贮藏过程中, 没食子酸的含量展现出一种先上升后下降的变化 趋势,这表明其含量并非稳定不变。此外,当采用 加热回流的方式进行提取时,余甘子中的水解鞣 质会发生转化,其结果是没食子酸的含量增 加[4,5]。鉴于没食子酸在余甘子中的含量受到诸 多环境条件和处理方式的影响,表现出一定的不 稳定性,且其作为单一指标在评估余甘子质量时 可能缺乏足够的准确性和稳定性,有必要探索其 他的化学指标成分,这些指标应具备更高的专属 性,能够稳定地反映余甘子的品质,并且与余甘子 的功效紧密相关,以确保对余甘子质量进行更精 确、可靠的控制。如测定余甘子中的鞣花酸、柯里 拉京等酚酸类成分,加上特征图谱或指纹图谱可 全面的评价余甘子质量[6,7]。

余甘子在使用过程中主要包括有核的果实和 去核的果肉,李时珍在《本草纲目》引《新修本草》 评论道:"又苏恭言其仁可入药,而未见主治何 病,岂亦与果同功耶?",这一评论实际上是对余 甘子应去核使用,或是保留其核使用,这两种不同 应用方式的有效性提出了疑问。在现有的81个

包含余甘子的中成药处方中,仅有10个处方明确 指出了余甘子在使用前需要去核处理[8]。然而, 无论是古代还是现代的文献记载,关于余甘子是 否应去核使用的详细指导都显得相当有限,缺乏 深入的解释和明确的说明。这反映了在余甘子应 用实践中,关于其去核与否的具体操作细节仍存 在一定的模糊性和不确定性。目前关于余甘子去 核使用研究较少,现代科学研究揭示了余甘子果 核内蕴藏丰富的脂肪酸与木质纤维素,这些成分 与果肉的化学组成有着明显的区别[9-12]。罗传红 等[9]已就余甘子果肉与果核在化学成分及药理 活性上的差异展开了研究。此外,在实际生产中, 余甘子在中成药及藏成药中的应用也呈现出多样 化的处理方式,包括是否去核的选择。因此,关于 余甘子是否应去核使用的问题,尚需进一步探讨 与权衡。

为研究滇产余甘子中有效化学成分,探究余甘子去核与否中主要有效成分的差异。利用HPLC 法对云南 32 个不同产地的余甘子中没食子酸、鞣花酸、柯里拉京、诃子酸含量进行测定和指纹图谱研究,为余甘子质量标准提供科学依据。并研究有核余甘子和无核余甘子中没食子酸、鞣花酸、柯里拉京、诃子酸含量的区别,以期为余甘子是否去核使用提供一定的参考依据。

1 实验部分

1.1 主要仪器与试剂

Agilent 1260 型高效液相色谱仪(美国 Agilent 公司); EYELA N-1100D-W 型旋转蒸发仪(东京理化有限公司); SK8200HP 型超声波清洗器(上海科导超声仪器有限公司); ME204/02 型电子天平、XSE205 型电子天平(梅特勒-托利多仪器(上海)有限公司); CAPCELL PAK C₁₈色谱柱(5 μm, 4.6 mm×250 mm)(日本资生堂公司)。

乙腈(CH_3CN ,色谱纯,赛默飞世尔科技(中国)有限公司);正丁醇($CH_3(CH_2)_3OH$)、无水乙醇(C_2H_5OH)(分析纯,利安隆博华(天津)医药化学有限公司);氨水($NH_3\cdot H_2O$)(分析纯,天津市风船化学试剂科技有限公司);甲醇(CH_3OH ,分析纯)、磷酸(H_3PO_4)(优级纯,国药集团化学试剂有限公司);没食子酸对照品($C_7H_6O_5$,批号为110831-201906,含量以91.50%计)、柯里拉京对照品($C_{27}H_{22}O_{18}$,批号为111623-200302,含量以100.00%计)、鞣花酸对照品(CH_6O_8 ,批号为111959-201903,含量以88.80%计),均购自中国食品药品检定研究院;诃子酸对照品($C_{41}H_{32}O_{27}$,

批号为 wkq202210,含量以98.34%计)(成都普菲德生物技术有限公司);水为高纯水,由 Milli-Q 纯水制备系统制备。

1.2 样品

余甘子样品于 2020 年 9~10 月采自云南不同产区,见表 1。余甘子经杨新周教授鉴定为叶下珠科植物余甘子果实;实验中 S1~S32 号为有核余甘子,S33~S64 号为 S1~S32 号所对应的去核余甘子。将挑选后的 S1~S32 号余甘子样品用超纯水洗净,干燥、粉碎,过 0.3 mm 筛,备用。将 S1~S32 号余甘子进行去核,然后干燥、粉碎,过 0.3 mm 筛,得到 S33~S64 号样品。

表1 余甘子采样信息

Tab.1 Phyllanthus emblica L.information

Serial number	Place of origin	Fruit diameter/cm	Fruit weight/g
S1	Youwang Town, Shidian County, Baoshan City	1. 49	1. 060 7
S2	Lvchun County, Honghe Hani and Yi Autonomous Prefecture	1. 21	1. 456 3
S3	Yangbi County, Dali Bai Autonomous Prefecture	1. 25	0. 992 5
S4	Longmen Township, Yongping County, Dali Bai Autonomous Prefecture	1. 53	1. 821 3
S5	Wadie Township, Yuanjiang Hani and Yi Autonomous County, Yuxi City	1. 13	1. 093 2
S6	Donghe Township, Lancang Lahu Autonomous County, Pu'er City	1.77	1. 674 1
S7	Xinping Yi Autonomous County, Yuxi City	1.47	1. 037 7
S8	Gengma Dai and Wa Autonomous County, Lincang City	1. 07	1. 085 8
S9	Laba Township, Lancang Lahu Autonomous County, Pu'er City	1. 35	1. 057 1
S10	Menghai Town, Menghai County, Xishuangbanna Dai Autonomous Prefecture	1.38	1.656 3
S11	Sanchalu Township, Dayao County, Chuxiong Yi Autonomous Prefecture	1. 05	1. 150 8
S12	Wenshan City, Wenshan Zhuang and Miao Autonomous Prefecture	1. 73	1. 580 9
S13	Zhedong Town, Zhenyuan Yi, Lahu and Hani Autonomous County, Pu'er City	1. 59	1. 091 3
S14	Yangchajie Township, Yuanjiang Hani and Yi Autonomous County, Yuxi City	1. 36	1. 314 6
S15	Chenghai Town, Yongsheng County, Lijiang City	1. 10	0. 969 9
S16	Liuku Town, Lushui City, Nujiang Lisu Autonomous Prefecture	1. 10	0.9800
S17	Tuodian Town, Shuangbai County, Chuxiong Yi Autonomous Prefecture	1. 20	0. 873 9
S18	Wenshan City, Wenshan Zhuang and Miao Autonomous Prefecture	1.47	1. 168 6
S19	Shangjiang Town, Lushui City, Nujiang Lisu Autonomous Prefecture	1. 11	0. 995 9
S20	Pupiao Town, Longyang District, Baoshan City	1. 67	1. 340 1
S21	Kangping Town, Jiangcheng Hani and Yi Autonomous County, Pu'er City	1.50	1. 131 8
S22	Lianghe County, Dehong Dai and Jingpo Autonomous Prefecture	1.72	1. 977 0
S23	Menglang Town, Lancang Lahu Autonomous County, Pu'er City	1. 63	1. 324 8
S24	Haijing Township, Lancang Lahu Autonomous County, Pu'er City	1. 16	0. 774 4
S25	Shigu Town, Yulong Naxi Autonomous County, Lijiang City	1.60	1. 379 1
S26	Mili Township, Yuanjiang Hani, Yi and Dai Autonomous County, Yuxi City	1. 52	1. 476 7
S27	Yaoguan Town, Shidian County, Baoshan City	1. 16	1. 298 5
S28	Donghui Town , Lancang Lahu Autonomous County , Pu'er City	1.48	1. 295 9
S29	Dutian Township, Shuangbai County, Chuxiong Yi Autonomous Prefecture	1.74	1. 636 2
S30	Ejia Town, Shuangbai County, Chuxiong Yi Autonomous Prefecture	1. 69	1.467 0
S31	Yangbi County, Dali Bai Autonomous Prefecture	1. 69	1. 781 9
S32	Santaishan Township, Mang City, Dehong Dai and Jingpo Autonomous Prefecture	1. 57	1. 298 4

1.3 色谱条件

色谱柱: CAPCELL PAK C_{18} (250 mm × 4.6 mm,5 μ m);流动相:磷酸溶液(0.1%,A)-乙腈(B),柱温:30 ℃;流速:1 mL/min;波长:273 nm;洗脱梯度(0~15 min,2%~2% B;15~16 min,2%~6% B;16~30 min,6%~13% B;30~44 min,13%~13% B;44~45 min,13%~14% B;45~46 min,14%~15% B;46~60 min,15%~17% B;60~65 min,17%~2% B;65~70 min,2%~2% B)。

1.4 溶液制备

1.4.1 对照品储备液

分别称取 14.36 mg 没食子酸对照品、13.64 mg 柯里拉京对照品、15.68 mg 诃子酸对照品、15.05 mg 鞣花酸对照品,分别置于 4 个 5 mL 棕色量瓶中,利用 50%甲醇溶解定容,摇匀,分别得到浓度为 2.63 mg/mL 没食子酸对照品贮备液 A、2.72 mg/mL 柯里拉京对照品贮备液 B、3.08 mg/mL 诃子酸对照品贮备液 C、2.67 mg/mL 鞣花酸照品贮备液 D。

1.4.2 混合对照品溶液

精密吸取 A、B、C、D 4 种对照品贮备液各 1 mL,分别置于 4 个棕色量瓶(10 mL)中,甲醇定容,得没食子酸、柯里拉京、诃子酸、鞣花酸质量浓度分别为 0.263、0.272、0.308、0.267 mg/mL 的混合对照品溶液 1。精密吸取 1 mL 混合对照品溶液 1,转移到 10 mL 棕色量瓶中,甲醇定容,制成含没食子酸、柯里拉京、诃子酸、鞣花酸质量浓度分别为 0.0263、0.0272、0.0308、0.0267 mg/mL 的混合对照品溶液 2。

1.4.3 供试品溶液

称取 0.100 0 g 余甘子样品,置于具塞瓶中, 向瓶中加入 50 mL 甲醇溶液(50%),确定其重量,加热回流 1 h 提取余甘子中的成分,冷却至室温,称重,用甲醇溶液(50%)补足损失的重量,充分摇匀,过滤,取续滤液,即得供试品溶液。

2 结果与讨论

2.1 专属性

以 S5 样品为研究对象,按照 1.4.3 供试品溶液,按 1.3 色谱条件进样测定,见图 1、图 2。从图 1、图 2 中可以得出,在该色谱条件下,所有待测成分都实现了良好的分离,分离度均大于 1.5,各组分在色谱图上呈现出明显的独立峰形,没有重叠或交叉现象,显示出优异的分离效果。

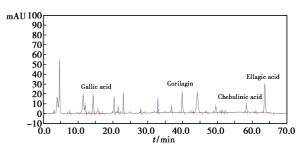


图1 样品 HPLC 色谱图

Fig.1 HPLC chromatogram of the sample

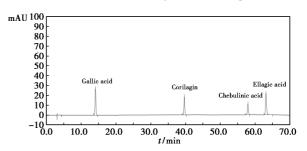


图 2 对照品 HPLC 色谱图

Fig.2 HPLC chromatogram of the reference substance

2.2 线性

精密量取 1 mL 混合对照品溶液 1,分别置于 2、5、10、25、50 mL 棕色量瓶中,加甲醇定容,得系列混合对照品溶液,进样测定,并基于测得的峰面积(y)和质量浓度(x)的数据,绘制标准曲线,线性方程见表 2。

表 2 线性方程

Tab.2 Linear equations

Ingredients	Linear equations	r	$\begin{array}{c} Linear \ range/\\ (\ \mu g \boldsymbol{\cdot} m L^{-1}) \end{array}$
Gallic acid	y = 21 887x - 19.964	1.0000	2. 63~263. 00
Corilagin	y = 14795x - 20.578	0.9999	2. 72~272. 00
Chebulinic acid	y = 9 889. 8x - 25. 442	1.0000	3. 08 ~ 308. 00
Ellagic acid	$y = 24 \ 165x - 226.82$	0.9999	2. 67~267. 00

结果表明,没食子酸在 $2.63 \sim 263.00$ $\mu g/m L$ 、柯里拉京在 $2.72 \sim 272.00$ $\mu g/m L$ 、诃子酸在 $3.08 \sim 308.00$ $\mu g/m L$ 、鞣花酸在 $2.67 \sim 267.00$ $\mu g/m L$ 范围内,r 均在 0.9999 及以上。4 种成分质量浓度与峰面积线性关系良好。

2.3 精密度

取适量混合对照品溶液 2,同 1 d 内连续测定 6次,记录每次测定峰面积,计算日内精密度;为了评估更长时间的稳定性,连续进样测定 3 d,计算日间精密度。通过实验得出,没食子酸、柯里拉京、诃子酸、鞣花酸峰面积的日内精密度相对标准偏差(RSD)分别为 0.15%、0.65%、0.21%、

0.32%(n=6),表明在短时间内的测量稳定性非常高。日间精密度相对标准偏差(RSD)分别为0.37%、1.21%、0.56%、0.43%(n=6),进一步证实了仪器在长时间测量精度和稳定性均表现优异。

2.4 稳定性

将 S5 供试品溶液在室温下分别放置了 0、2、4、8、12、24、48 h 后进样测定,并详细记录每次测定的峰面积。根据实验数据,计算出没食子酸、柯里拉京、诃子酸和鞣花酸峰含量的相对标准偏差 (RSD)分别为 0.35%、0.58%、0.47% 和 0.66% (n=7)。结果清晰地表明,在室温条件下放置 48 h 内,S5 供试品溶液中的 4 种成分均显示出良好的稳定性。

2.5 重复性

制备 6 份 S1 供试品溶液,进行测定。得出没食子酸、柯里拉京、诃子酸、鞣花酸 RSD 分别为 0.55%、0.59%、0.48%、0.73%、1.12% (n=6),说明实验重复性较好。

2.6 加标回收率

称取 9 份 0.050 0 g S1 样品,按照 1.4.3 确定的供试品溶液方法,精确地加入了含有不同浓度的没食子酸、柯里拉京、诃子酸、鞣花酸的混合对照品溶液(浓度分别为 0.087 2、0.018 5、0.020 7、0.026 8 mg/mL),并分别按照 5、10、15 mL 的体积加入(每个体积加入 3 份样品)。随后,使用 50%的甲醇(在扣除已经加入的混合对照品溶液体积后,补足至 50 mL)制备供试品溶液。按照 1.3

表 3 加标回收率 Tab.3 Recovery rate

	rab.s Recovery rate							
Ingredients	Sampling amount/	Content in the sample/	Dosage/ mg	Determined amount/	Recovery rate/	Average/	RSD/	
	0. 050 1	0. 864 5	0. 436 0	1. 310 2	102. 23			
	0.0500	0. 862 9	0.436 0	1. 302 1	100. 73			
	0.050 2	0. 866 5	0.436 0	1. 310 2	101. 76			
	0.0500	0. 862 7	0. 872 0	1. 732 5	99. 74			
Gallic acid	0.0502	0.8667	0. 872 0	1. 735 8	99. 67	100.69	0. 99	
	0.0502	0. 865 1	0. 872 0	1. 733 2	99. 55			
	0.050 3	0. 867 2	1. 308 0	2. 175 9	100. 05			
	0. 050 3	0. 867 4	1. 308 0	2. 186 8	100. 87			
	0.050 1	0. 863 9	1. 308 0	2. 192 5	101. 57			
	0.050 1	0. 180 3	0. 092 5	0. 270 5	97. 50			
	0.0500	0.1800	0.0925	0. 271 6	99. 04			
	0.0502	0. 180 7	0.0925	0. 270 8	97. 36			
	0.0500	0. 179 9	0.185 0	0.3602	97. 43			
Corilagin	0.0502	0. 180 8	0.185 0	0. 361 2	97. 53	98.77	1.55	
	0.0502	0. 180 5	0. 185 0	0. 361 9	98. 08			
	0.0503	0. 180 9	0. 277 5	0. 459 4	100. 37			
	0.0503	0. 180 9	0. 277 5	0. 459 9	100. 53			
	0.0501	0. 180 2	0. 277 5	0.4608	101. 12			
	0.0501	0. 201 3	0. 103 5	0. 308 8	103. 91			
	0.0500	0. 200 9	0. 103 5	0. 308 1	103. 58			
	0.0502	0. 201 7	0. 103 5	0. 306 9	101.61			
	0.0500	0. 200 8	0. 207 0	0.408 1	100. 12			
Chebulinic acid	0.0502	0. 201 8	0. 207 0	0. 407 9	99. 58	100. 92	1.71	
	0.0502	0. 201 4	0. 207 0	0.409 1	100. 33			
	0.0503	0. 201 9	0.3105	0.5108	99. 49			
	0.0503	0. 201 9	0.3105	0. 511 1	99. 57			
	0.050 1	0. 201 1	0. 310 5	0. 511 8	100. 05			
	0.050 1	0. 264 6	0. 134 0	0. 396 5	98. 42			
	0.0500	0. 264 1	0. 134 0	0. 397 5	99. 52			
	0.0502	0. 265 2	0. 134 0	0. 396 8	98. 17			
	0.0500	0. 264 1	0. 268 0	0. 530 1	99. 26			
Ellagic acid	0.0502	0. 265 3	0. 268 0	0. 531 2	99. 22	99. 41	0.76	
	0.0502	0. 264 8	0. 268 0	0. 531 3	99. 43			
	0.0503	0. 265 5	0.4020	0.668 8	100. 33			
	0.0503	0. 265 5	0.4020	0.6678	100. 07			
	0.050 1	0. 264 5	0.4020	0.667 5	100. 26			

实验方法对制备好的供试品溶液进行进样测定, 并详细记录了每次测定的峰面积。通过对实验数 据的分析,计算出这4种指标(没食子酸、柯里拉 京、诃子酸、鞣花酸)的回收率以及相对标准偏差 (RSD)值,结果见表3。

没食子酸、柯里拉京、河子酸、鞣花酸的平均回收率分别为 100.69%、98.77%、100.92%、99.41%, RSD 值分别为 0.99%、1.55%、1.71%、0.76%。

2.7 样品测定

测定了云南省64批余甘子样品中没食子酸、柯里拉京、河子酸、鞣花酸含量,结果见表4。

表 4 余甘子中没食子酸、柯里拉京、河子酸和 鞣花酸的含量

Tab.4 Contents of gallic acid, corilagine, chebulinic acid and ellagic acid in *Phyllanthus emblica* L. (%)

No	Gallic acid	Corilagine	Chebulinic acid	Ellagic acid
S1	1. 73	0.36	0.40	0. 53
S2	0. 54	0.33	0. 24	_
S3	2. 74	0.46	0. 43	_
S4	2. 21	0.42	0.42	_
S5	1.01	0.74	1.51	1. 26
S6	0.63	0.40	0.46	0. 97
S7	1.31	0.58	0.85	1. 44
S8	1.76	0.48	0.62	1. 55
S9	0.81	0. 27	0.48	0. 58
S10	1.62	0.50	0.86	1.86
S11	0.97	0.56	0.77	1. 23
S12	1.66	0.31	0. 58	0. 94
S13	0.42	0. 54	0.71	0.81
S14	0.72	1. 26	0.80	2. 46
S15	0.72	0.62	0.72	1. 24
S16	0.71	0.90	1. 11	1. 91
S17	2. 58	0. 52	0. 45	0. 59
S18	0.77	0.55	1.09	1. 25
S19	0.62	0.70	0.88	1. 36
S20	0.77	0.79	0.80	1. 79
S21	0. 54	0.78	1.42	1.64
S22	0. 94	0.71	0. 56	1. 16
S23	1.76	0. 54	1. 13	1. 29
S24	1. 05	0.61	0.71	1. 32
S25	1. 23	0.39	0.66	0. 99
S26	1.41	0.38	0.48	0. 95
S27	1.02	0.51	0.72	1.07
S28	0.89	0. 27	0. 54	0.65
S29	1.18	0. 91	0.75	2. 05
S30	0. 53	0.50	0.77	0.88
S31	0.81	0.73	0. 45	1. 10
S32	0. 65	0. 63	0. 69	1. 21
S33	0. 68	0. 15	0.72	0.09

绘表

				绥表
No	Gallic acid	Corilagine	Chebulinic acid	Ellagic acid
S34	0. 31	0. 34	0. 49	0. 04
S35	0.89	0. 13	0. 69	0.01
S36	0.74	0.32	0. 56	0.08
S37	1.05	0.60	1.46	0.04
S38	0.42	0. 15	0. 59	0.08
S39	0.58	0.11	0.89	0.01
S40	1. 14	0.34	1. 25	0.04
S41	0.79	0.03	0.80	0.04
S42	1. 14	0.09	1.02	0.04
S43	0. 93	0.43	0.82	0.05
S44	1.34	0. 21	0. 58	0. 14
S45	0.39	0. 26	0.73	0.08
S46	0.53	0.62	0. 79	0.07
S47	0.43	0. 28	0. 79	0.01
S48	0.36	0. 59	1. 16	0.04
S49	1.06	0.31	0. 96	0.05
S50	0.65	0.51	1. 11	0.04
S51	0.34	0.48	1. 22	0.02
S52	0.45	0.48	1. 15	0.03
S53	0. 29	0. 28	1.87	0.76
S54	0.42	0.35	0. 91	0.75
S55	1. 13	_	1. 09	0.65
S56	0.64	_	1. 05	1. 29
S57	1. 12	0.30	1.01	0.70
S58	1.06	0.31	0. 67	0. 54
S59	0.73	0. 13	0.77	0.01
S60	0.68	0.10	0. 65	0.02
S61	0.92	0.76	0. 85	0.05
S62	0.53	0.11	0.85	0.05
S63	0. 24	0. 14	1.01	0.01
S64	0. 58	0. 31	0. 65	0. 01

从表 4 中可以看出,有核(S1~S32 号)和无 核(S33~S64号)余甘子中没食子酸、柯里拉京、 诃子酸和鞣花酸的含量存在差异。S1~S32号 (有核)样品中没食子酸的含量为 0.42%~ 2.74%,平均含量为1.13%,其中含量>1.2%的样 品有11个,其余的均低于中国药典(2020版)要 求。柯里拉京的含量为 0.27%~1.26%,平均含 量为 0.57%。诃子酸的含量为 0.24%~1.51%, 平均含量为 0.72%。 鞣花酸的含量为 0~2.46%, 平均含量为 1.24%(未检出的样品以含量为 0 计 算)。S33~S64号样品(无核)的余甘子没食子酸 的含量为 0.24%~1.34%,平均含量为 0.70%。 柯里拉京的含量为 0~0.76%, 平均含量为 0.29% (未检出的样品以含量为0计算)。诃子酸的含 量为 0.49%~1.87%,平均含量为 0.91%。鞣花 酸的含量为 0.01%~1.29%,平均含量为 0.18%。

根据云南不同产区 4 种成分含量平均值进行比较,见图 3。从图 3 中可以看出,云南 32 个不同产区余甘子,有核余甘子中没食子酸、柯里拉京、鞣花酸的含量均高于无核余甘子。而无核余甘子

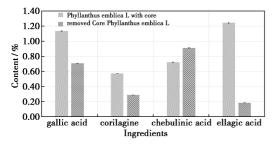


图 3 有核和无核余甘子成分对比

Fig.3 Comparison of components of pitted and removed core *Phyllanthus emblica* L.

中诃子酸高于有核余甘子。表明有核余甘子果实 的化学指标成分总体上要优于无核果实的化学成 分,可能是余甘子果核中含有部分的没食子酸、柯 里拉京、鞣花酸。

2.8 HPLC 指纹图谱的生成及相似度评价

2.8.1 HPLC 指纹图谱的生成

取 S1~S32 号余甘子(有核)样品,按照 1.4.3制备供试品溶液,进行测定。记录色谱图,将其导入"中药色谱指纹图谱相似度评价系统",分析 S1~S32 号余甘子 HPLC 色谱图^[14],选取 11个峰为共有峰,得到特征图谱,见图 4;余甘子的共有模式图谱见图 5。2 号峰为没食子酸、8 号峰为柯里拉京、10 号峰为诃子酸、11 号鞣花酸的对照品保留时间相一致。

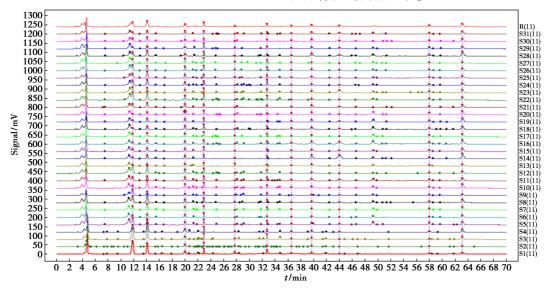
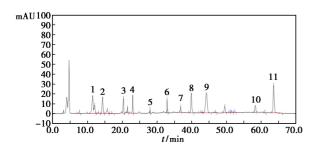



图 4 余甘子指纹图谱

Fig.4 Fingerprint of Phyllanthus emblica L.

2:没食子酸;8:柯里拉京;10:诃子酸;11:鞣花酸

图 5 对照样品的 HPLC 指纹图谱

Fig.5 Fingerprint of the reference substance

2.8.2 相似度评价

以余甘子样品的对照图谱为参照图谱,对 S1~S32号余甘子(有核)的图谱进行相似度分析,分析结果见表 5。云南不同产区 32 批余甘子 样品的相似度为 0.900~1.000,样品间相似度差 异小,表明云南不同产区余甘子样品质量稳定。

表 5 余甘子相似度结果

Tab.5 Phyllanthus emblica L.similarity result

No	Similarity	No	Similarity	No	Similarity
S1	0. 884	S12	0. 938	S23	0. 945
S2	0. 905	S13	0. 911	S24	0. 979
S3	0. 923	S14	0. 954	S25	0. 971
S4	0. 942	S15	0. 973	S26	0.990
S5	0. 970	S16	0. 950	S27	0. 963
S6	0. 964	S17	0. 976	S28	0. 961
S7	0. 989	S18	0. 903	S29	0. 902
S8	0. 977	S19	0. 922	S30	0. 983
S9	0. 906	S20	0. 937	S31	0. 935
S10	0. 946	S21	0. 987	S32	0. 998
S11	0. 991	S22	0. 980		

2.9 聚类分析

将 S1~S32 号余甘子样品数据通过 SPSS 26 聚类分析软件进行统一标准化处理,采用系统聚类法结合欧氏距离作为样品的测度进行聚类分析,结果见图 6。由图 6 可看出,S1~S32 号余甘子样品分为 6 类,S21、S30、S31、S6、S19、S28、S15、S17、S7、S11、S18、S10、S23 为一类,S8、S24、S25、S26、S27、S29 为一类,S5、S22 为一类,S1、S3、S4、S12 为一类,S2、S9、S13 为一类,S14、S16、S20 为一类。

2.10 主成分分析

利用 SPSS 26 软件对 S1~S32 号余甘子样本中检测到的 11 个共有峰峰面积进行标准化处理的基础上,将 S1~S32 号余甘子 11 个共有峰的峰面积依据主成分的特征值和贡献率,对其进行主成分分析。主成分分析选取 3 个主成分,特征值

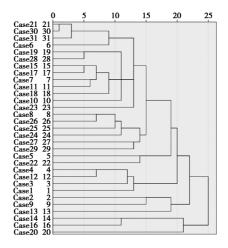


图 6 聚类分析树状图

Fig.6 Cluster analysis tree

分别为 4. 276、2. 692、1. 121, 累积方差贡献率分别是 38. 871%、63. 342%、73. 536%,结果见表 6。

表 6 主成分的方差贡献率

Tab.6 Variance contribution rate of principal component

		Initial eigenvalues			Extracting squared factor loadings			
Component	Eigenvalue	variance contribution rate/%	Cumulative variance contribution rate/%	Eigenvalue	variance contribution rate/%	Cumulative variance contribution rate/%		
1	4. 276	38. 871	38. 871	4. 276	38. 871	38. 871		
2	2. 692	24. 470	63. 342	2. 692	24. 470	63. 342		
3	1. 121	10. 194	73. 536	1. 121	10. 194	73. 536		
4	0.859	7. 813	81. 349					
5	0.813	7. 390	88. 739					
6	0.481	4. 374	93. 113					
7	0.334	3. 035	96. 148					
8	0. 210	1. 908	98. 056					
9	0. 115	1.047	99. 103					
10	0.069	0. 624	99. 727					
11	0.030	0. 273	100.000					

余甘子特征图谱主成分分析得到因子矩阵 A,根据计算公式 $U_i = A_i/\lambda_i$ 得到主成分载荷矩阵 U,将 $S1 \sim S32$ 号余甘子(有核) HPLC 特征图谱 11 个特征峰的峰面积标准化处理后得到原始变量的标准分 $X_1 \sim X_{11}$,根据 U_1 、 U_2 、 U_3 和 $X_1 \sim X_{11}$ 计算主成分 Y_1 、 Y_2 、 Y_3 得分,计算公式为 $Y_1 = U_{1(1)} X_1 + U_{1(2)} X_2 + \cdots + U_{1(11)} X_{11}$; $Y_2 = U_{2(1)} X_1 + U_{2(2)} X_2 + \cdots + U_{2(11)} X_{11}$; $Y_3 = U_{3(1)} X_1 + U_{3(2)} X_2 + \cdots + U_{3(11)} X_{11}$ 。由主成分得分 Y_1 、 Y_2 、 Y_3 进行成分得分系数矩阵,结果见表 T_3

由表 7 可知, 主成分 1 与保留时间 11.845、14.121、20.018、22.937、32.763、36.547、57.985、63.162 min 的色谱峰等关系密切, 均呈正相关, 主

表7 成分得分系数矩阵

Tab.7 Component score coefficient matrix

chromatographic peak	1	2	3
st11. 845	0. 129	0. 099	-0. 319
st14. 121	0. 174	0. 229	-0. 375
st20.018	0. 283	-0.004	0.048
st22. 937	0. 344	-0. 144	0. 301
st27.776	-0.014	-0. 271	0. 156
st32. 763	0. 265	0. 025	-0.001
st36. 547	0.071	0.016	0. 309
st39. 716	-0.058	0. 326	-0.067
st44. 041	-0.074	0. 324	-0. 120
st57. 985	0. 167	-0.034	0. 391
st63. 162	0.060	0. 365	-0.080

要与没食子酸、柯里拉京、鞣花酸的峰有关,与药典报道的没食子酸有关;主成分 2 与保留时间 11.845、14.121、32.763、36.547、44.041、57.985、63.162 min 的色谱峰关系密切,呈正相关;主成分 3 与保留时间 20.018、22.937、36.547、57.985 min 的色谱峰关系密切,呈正相关。

3 结论

通过实验得出,S1~S32 号余甘子(有核)样品中没食子酸的含量为 0.42%~2.74%,柯里拉京的含量为 0.27%~1.26%,诃子酸的含量为 0.24%~1.51%,鞣花酸的含量为 0~2.46%。表明云南不同产区的余甘子中 4 种化学成分(没食子酸、柯里拉京、诃子酸、鞣花酸)的含量存在差异。这可能与余甘子药材的生长环境等因素有关。S33~S64 号样品(无核)的余甘子没食子酸的含量为 0.24%~1.34%,柯里拉京的含量为 0.00%~0.76%,诃子酸的含量为 0.49%~1.87%,鞣花酸的含量为 0.01%~1.29%。通过比较,有核余甘子中没食子酸、柯里拉京、鞣花酸的含量均高于无核余甘子。而无核余甘子中诃子酸高于有核余甘子。说明余甘子果核中含有没食子酸、柯里拉京、诃子酸和鞣花酸。

在 2020 年版《中国药典》(一部)中,对于余甘子药材的质量标准,主要依赖于没食子酸作为定量指标,然而这一指标的专属性相对较弱,且仅以单一指标进行评价存在局限性。

为了更全面、准确地评估余甘子的质量,本试验在相同条件下测定了余甘子中4种关键成分(没食子酸、柯里拉京、诃子酸、鞣花酸)的含量。结合指纹图谱或特征图谱的分析方法,本试验为余甘子的质量控制评价提供了一种更为全面、科学的新途径。这种方法的运用,不仅增强了评价的专属性,也提高了评价的准确性和可靠性,对于确保余甘子药材的质量和药效具有重要意义。

参考文献:

- [1]国家药典委员会.中华人民共和国药典(一部)[M].北京:中国医药科技出版社,2020.
- [2]杨顺楷,杨亚力,杨维力.余甘子资源植物的研究与开发进展[J].应用与环境生物学报,2008,**14**(6):846.
- [3]程子贤,郭思琪,姜浩,等.余甘子种质资源及余甘子叶生物活性研究进展[J].农产品加工,2022,(13):86-90:96.
- [4]毛胜楠.余甘子立地条件及品质特征的研究[D].成都:成都中医药大学,2019.
- [5] 黄浩洲,魏夕川,林俊芝,等.余甘子回流过程中鞣质 转化及药典含量测定方法合理性探讨[J].中国药学杂志,2019,54(7);581-587.
- [6]范源,刘竹焕.余甘子活性成分抗动脉硬化作用的研究进展[J].云南中医学院学报,2011,34(2):67-70.
- [7]罗春丽.余甘子对肿瘤细胞抑制作用及免疫调节的研究[J].中国实验方剂学杂志,2010,**16**(13):155-158.
- [8]李雪冬,潘烨华,田雨闪,等.余甘子的本草考证及其 现代研究中若干问题的探讨[J].中草药,2022, 53(18):5 873-5 883.
- [9]罗传红,黄胜杰,胡琪琪,等.去核对余甘子药材质量的影响[J].中国实验方剂学杂志,2021,**27**(**9**):147-156.
- [10] 葛双双.余甘子核仁油不饱和脂肪酸富集及其油脂氧化稳定性研究[D].北京:中国林业科学研究院,2017
- [11]吴国欣,李永星,陈密玉,等.余甘籽油脂肪酸组成的 GC-MS 分析[J].中医药学报,2003,31(6):21-23.
- [12] 张雯雯,李坤,郑华,等.不同提取溶剂对余甘子核仁油品质的影响[J].食品工业科技,2017,38(2):261-265.
- [13]梁文仪,张秋楠,常子豪,等.余甘子药材及去核饮片质量标准修订研究[J].中国药学杂志,2021,56(19);1600-1606.
- [14] 孙礼堂,刘明川,曹健,等.基于多指标定量指纹图谱和化学计量学的淫羊藿质量标准提高研究[J].化学试剂,2023,45(11):117-125.