加速溶剂萃取-固相萃取净化-GC/MS法 测定纺织固废中 16 种多环芳烃

铁建成^{1,2},刘俊*^{3,4},肖远淑²,贾丽霞²
(1.国检测试控股集团南京国材检测有限公司,江苏南京 210046;
2.新疆大学 纺织与服装学院,新疆 乌鲁木齐 830046;
3.乌鲁木齐海关,新疆 乌鲁木齐 830011;4.成都海关技术中心,四川 成都 610041)

摘要:建立了加速溶剂萃取-固相萃取净化-气相色谱-质谱(ASE-SPE-GC/MS)的方法,用于纺织固体废物中 16 种多环芳 烃(PAHs)的定性和定量分析。以丙酮-正己烷(V(丙酮):V(正己烷)=1:1)作为萃取剂,采用 L₉(3⁴)正交实验法对加速 溶剂萃取条件进行选择和优化,提取液经 MIP-PAHs 固相萃取柱富集和净化,GC/MS 进行测定,外标法定量。结果表明: 16 种 PAHs 在 0.1~5 mg/L 范围内线性良好,相关系数为 0.993 2~0.999 8,检出限为 0.82~1.95 μg/kg,定量限为 3.28~7.80 μg/kg。在 0.1、2、5 mg/L 加标水平下,16 种 PAHs 的回收率为 73.7%~103.8%,日内相对标准偏差为 0.7%~8.2%,日间相对标准偏差为 1.4%~9.1%,满足分析检测的要求。ASE-SPE-GC/MS 方法操作简便、干扰度低,适用于纺 织固体废物中 PAHs 的检测分析。

关键词:加速溶剂萃取;固相萃取净化;气相色谱-质谱法;纺织固体废物;多环芳烃 中图分类号:065 文献标识码:A 文章编号:0258-3283(2024)08-0099-08 DOI:10.13822/j.cnki.hxsj.2024.0073

Accelerated Solvent Extraction-Solid Phase Extraction Purification-GC/MS Method for the Determination of 16 Polycyclic Aromatic Hydrocarbons in Textile Solid Waste *TIE Jian-cheng*^{1,2}, *LIU Jun*^{*3,4}, *XIAO Yuan-shu*², *JIA Li-xia*² (1.CTC Nanjing Guocai Testing Limited Corporation, Nanjing 210046, China; 2. College of Textiles and Clothing, Xinjiang University, Urumqi 830046, China; 3. Urumqi Customs, Urumqi 830011, China; 4. Chengdu Customs Technology Center, Chengdu 610041, China)

Abstract: An accelerated solvent extraction-solid phase extraction purification-gas chromatography coupled with mass spectrometry (ASE-SPE-GC/MS) method was developed for the qualitative and quantitative analysis of 16 kinds of polycyclic aromatic hydrocarbons (PAHs) in textile solid waste. With acetone-n-hexane (V(acetone):V(n-hexane)=1:1) as extractant, $L_9(3^4)$ orthogonal experiment was used to select and optimize the conditions of ASE. The extraction solution was enriched and purified by the MIP-PAHs solid-phase extraction column, determined by GC/MS and quantified by external standard method. The results showed that 16 PAHs had good linearity in the range of 0. 1~5 mg/L with the correlation coefficients of 0. 993 2~0. 999 8, the detection limits were 0. 82~1. 95 µg/kg, and the quantification limits were 3. 28~7. 80 µg/kg. At the standard addition levels of 0. 1,2 and 5 mg/L, the recoveries of 16 PAHs were 73. 7% ~ 103. 8%, the intraday relative standard deviations (RSDs) were 0. 7% ~ 8. 2%, and the daytime RSDs were 1. 4% ~ 9. 1%, which met the requirements of analysis and detection. The ASE-SPE-GC/MS method is easy to operate and has low interference, which is suitable for the detection and analysis of PAHs in textile solid waste.

Key words: accelerated solvent extraction; solid phase extraction purification; gas chromatography-mass spectrometry; textile solid waste; polycyclic aromatic hydrocarbons.

收稿日期:2024-01-31;网络首发日期:2024-05-15

基金项目:新疆维吾尔自治区重大科技专项项目(2020A03002-2)。

作者简介:铁建成(1993-),男,山东乐陵人,硕士,工程师,主要研究方向为固体废物检测与鉴别。

通讯作者:刘俊, E-mail:47575290@qq.com。

引用本文:铁建成,刘俊,肖远淑,等.加速溶剂萃取-固相萃取净化-GC/MS 法测定纺织固废中 16 种多环芳烃[J].化学试剂,2024, 46(8):99-106。

纺织固体废物来源广泛、基质复杂,常伴随着 一些杂质和有毒害物质的存在,多环芳烃(Polycyclic Aromatic Hydrocarbons, PAHs)就属于其中 的一大类。PAHs从广义上指的是分子中含有两 个或以上苯环组成的碳氢化合物^[1]。在纺织行 业中,PAHs主要用作生产染料的基本原料^[2,3], 由于 PAHs 具有致癌、致畸、致基因突变性^[4]等危 害,会对人类身体健康造成极大的威胁。国际环 保纺织协会 Oeko-Tex[®] standard 100 规定,在婴儿 产品中苯并[*a*] 芘不能超过 0.5 mg/kg,24 种 PAHs 总量不得超过 5 mg/kg,直接接触皮肤产 品、非直接接触皮肤产品以及装饰材料中苯并 [*a*] 芘不能超过 1 mg/kg,24 种 PAHs 总量不得超 过 10 mg/kg。

目前,对于 PAHs 的研究前处理方法多采用 固相萃取^[5-8]、超声波萃取^[9]、加速溶剂萃取 法^[10,11]、液液萃取^[12-14]等方式。相比之下,加速 溶剂萃取法则具备用时短、自动化程度高等优点, 可有效降低人为因素的干扰和对溶剂的需求量。 测定方法有气相色谱法^[15]、气相色谱串联质谱 法^[16-19]、高效液相色谱法^[20-22]、荧光光谱法^[23]等。 其中,气相色谱串联质谱法(GC/MS)定性准确, 拥有更低检出限,可有效降低背景干扰,具有普遍 性及实用性。

本文将采用加速溶剂萃取-固相萃取净化前 处理方法,对纺织固体废物种 PAHs 进行提取, 同时采用 GC/MS 进行测定。以期在针对复杂 基质样品中 PAHs 的提取建立一种操作简单省 时、干扰小、对环境友好且富集效率高的前处理 方法。

1 实验部分

1.1 主要仪器与试剂

Agilent 7890A/5975C 型气相色谱-质谱联用 仪、HP-5MS、HP-1、DB-35MS 型 3 种规格毛细管 色谱柱、500 mg/6 mL Florisil 固相萃取柱、500 mg/6 mL C18 固相萃取柱(美国安捷伦公司);N-EVAP-112 型水浴氮吹仪(美国 Organomation 公 司);EYELA MMV-1000W 型振荡器(日本东京理 化公司);E-914/916 型快速溶剂萃取仪(瑞士 Buchi 公司);MS 3 型涡旋混匀器(德国 IKA 公 司);SmarVapor RE 501 型旋转蒸发仪(德国 De Chem-Tech 公司);MR304/A 型电子天平(瑞士梅 特勒-托利多公司);500 mg/6 mL MIP-PAHs 固相 萃取柱(上海安谱实验科技股份有限公司)。

素、苊烯、苊、芴、菲、蔥、苯并苊、芘、苯并[*a*] 蔥、苯并[*b*]荧蔥、苯并[*e*]芘、1-甲基芘、苯并[*a*] 芘、苯并[*k*]荧蔥、茚并[1,2,3-*cd*]芘、二苯并[*a*, *h*]蔥16种标准物质纯度均大于98.0%(德国 Dr. Ehrenstorfer GmbH 公司);甲醇、丙酮、正己烷、二 氯甲烷、环己烷、乙酸乙酯(色谱纯,美国赛默飞 世尔科技公司);苯(分析纯,上海阿拉丁生化科 技股份有限公司)。实验所采用的试样来自于市 场委托和进口报检的100批纺织固废样品。

1.2 加速溶剂萃取-固相萃取净化的实验过程

准确称取 1.0 g(精确至 0.01 g) 纺织固体废 物布样于加速溶剂萃取池内, 剪碎后混匀, 按照仪 器操作步骤上机。萃取压力 12.0 MPa, 萃取温度 105 ℃, 冲洗体积为 50% 的池体积, 循环 3 次, 吹 扫时间 80 s, 静态萃取时间 2 min。提取液转移至 20 mL 试管中, 于 30 ℃水浴条件下氮吹至 1~ 2 mL, 待固相萃取柱进一步富集和净化。

将 MIP-PAHs 固相萃取柱先后用二氯甲烷和 正己烷预先活化,将提取液倒入柱中,与正己烷润 洗管壁一并倒入柱中,弃去流出液,用10 mL 正己 烷进行淋洗,弃去淋洗液,于负压下抽干萃取柱待 溶液流尽,采用二氯甲烷进行洗脱两次,收集流出 液,氮吹至近干,定容至1 mL,供 GC/MS 测定。

1.3 GC/MS条件

GC 条件: HP-5MS 毛细管色谱柱(30.0 m× 0.25 mm, 0.25 μm), 载气为氦气, 流速 1.0 mL/min,进样量为 1.0 μL,不分流进样,进样口温 度 300 ℃,程序升温: 柱起始温度 60 ℃ 保持 1 min, 10 ℃/min 升至 180 ℃保持 3 min, 15 ℃/min 升至 300 ℃保持 6 min。

MS条件:电离方式为电子轰击离子源(EI), 离子源温度为230℃,扫描模式为选择离子扫描 (SIM),质量扫描范围 *m/z* 45~500,溶剂延迟 6 min,全部程序总时长为30 min。

1.4 定性依据和定量方法

通过对比样品与标准工作液质量色谱图的色 谱峰保留时间、特征离子及其相对丰度比进行定 性。试样质量色谱图与标准工作液质量色谱图中 色谱峰的保留时间一致(变化范围在-0.5%~ 0.5%之间),在扣除背景后的质谱图中所选特征 离子均有出现,且在相同浓度的情况下与标准工 作液的相对丰度值相差≤20%,即可判定样品中 含有该目标物质。16种多环芳烃的保留时间、特

征离子及相对丰度比见表 1。定量方法采用外标 法定量。

表1 16 种多环芳烃的保留时间、特征离子及 相对丰度比^注

Tab.1	Retention	time	es, characte	eristic ion	s and	relative
abundan	ce ratios o	of 16	polycyclic	aromatic	hydro	carbons

化合物	保留时间/ min	特征离子及相对丰度比/ (m/z)
萘	7.961	128 * (100) 、127(12.40) 、 129(11.00) 、51(6.20)
苊烯	11. 568	152*(100)、151(19.30)、 150(13.60)、153(12.90)
苊	12.013	153 * (100) 154(98.20) 152(45.90) 76(17.20)
芴	13.210	166 [*] (100)、165(86.70)、 167(13.80)、163(12.70)
菲	16. 294	178*(100)、176(18.10)、 179(15.50)、152(8.50)
蒽	16. 467	178 * (100) 、176(17.90) 、 179(15.30) 、177(9.30)
苯并苊	19. 763	202*(100)、200(18.90)、 203(17.50)、201(13.80)
芘	20. 236	202*(100)、200(21.80)、 201(17.60)、101(16.50)
1-甲基芘	21.441	216 [*] (100)、215(69.70)、 217(16.90)、213(16.90)
苯并[a] 蔥	22. 647	228 * (100) 、226(25.00) 、 229(19,90) 、114(11.50)
苯并[b]荧蒽	24. 430	252*(100)、250(24.20)、 253(21.00)、126(16.30)
苯并[k]荧蒽	24. 464	252*(100)、250(24.80)、 253(20.90)、126(19.30)
苯并[e]芘	24. 878	252*(100)、250(31.70)、 253(20.80)、125(19.30)
苯并[a]芘	24. 975	252*(100)、250(23.50)、 253(23.00)、126(15.00)
茚并[1,2,3-cd]芘	27. 284	276*(100)、277(24.00)、 138(21.80)、274(20.30)
二苯并[a,h]蔥	27.353	276*(100)、278(86.00)、 138(27.00)、277(25.80)

注:*为定量离子。

1.5 整体实验流程

待检样品经加速溶剂萃取和固相萃取净化处 理后,通过 GC/MS 进行测定。试验对加速溶剂萃 取和固相萃取条件进行了选择和优化,同时优化 了 GC/MS 测试条件,整体实验流程见图 1。

2 结果与讨论

- 2.1 GC/MS条件的选择和优化
- 2.1.1 色谱柱的选择及升温程序的优化 实验分别采用 HP-5MS、HP-1、DB-35MS 这 3 种

Fig.1 Overall experimental flow chart

毛细管色谱柱对 16 种 1 mg/L 多环芳烃标准工作 液进行 GC/MS 测定,结果如图 2 所示。通过对各 个目标物质分析发现,当使用 DB-35MS 和 HP-1 毛细管色谱柱对 16 种多环芳烃进行检测时,苯并 [b]荧蒽和苯并[k]荧蒽、苯并[e] 芘和苯并[a]

图 2 不同毛细管色谱柱 GC/MS 测定总离子流 色谱图对比

芘、茚并[1,2,3-cd] 芘和二苯并[a,h] 葱 3 组目 标物不能进行良好地分离,且响应值较低,而 HP-5MS 毛细管色谱柱则可以将 16 种多环芳烃进行 良好地分离,响应值较高,故实验最终选择 HP-5MS 毛细管色谱柱。为进一步优化 GC/MS 条 件,实验考察了 3 种不同升温程序下,16 种目标 物质的分离效果,升温程序见表 2。实验发现,3 种升温程序对 16 种目标物的分离效果相差不大, 均能满足分析的要求,考虑到实验的高效性,本文 将最终选择升温条件为用时较短的升温程序 3*。

表 2 3 种不同的升温程序条件

Fab.2	Three	different	temperature	program	conditions
-------	-------	-----------	-------------	---------	------------

升温 程序	升温速率/ (℃·min ⁻¹)	温度/ ℃	保持时间/ min	运行时间/ min
	_	60	1	1
. #	10	160	2	13
1"	8	240	2	25
	5	300	6	43
	—	60	1	1
2#	10	200	5	20
	8	280	8	38
	—	60	1	1
3#	10	180	3	16
	15	300	6	30

2.1.2 扫描模式的选择

按照 2.1.1 GC/MS 条件实验进一步对 16 种 多环芳烃运用 SIM 扫描模式进行了测定,16 种多 环芳烃 SIM 模式下总离子流色谱图见图 3。通过 对比图 2,可以明显看出各个目标物质的响应值 均有不同程度的提高,且不存在溶剂峰的干扰。

1.萘;2.苊烯;3.苊;4.芴;5.菲;6.蒽;7.苯并苊;
 8.芘;9.1-甲基芘;10.苯并[a]意;11.苯并[b]荧蒽;
 12.苯并[k]荧蒽;13.苯并[e]芘;14.苯并[a]芘;
 15.茚并[1,2,3-cd]芘;16.二苯并[a,h]蒽
 图 3 16 种多环芳烃 SIM 模式下总离子流色谱图
 Fig.3 Total ion current chromatograms of 16 PAHs in

2.2 样品前处理方法的筛选与优化
 采用1.3样品前处理方法对加标含量均为

SIM mode

1 mg/L 的纺织固体废物样品进行回收率实验。

2.2.1 萃取溶剂的选择

实验分别考察了以正己烷、苯、环己烷、V(正 己烷):V(丙酮)=1:1、V(苯):V(二氯甲烷)=1:1 作为提取剂时对16种多环芳烃提取效率的影响, 其中加速溶剂萃取条件固定为萃取温度 100 ℃, 静态萃取时间4 min,循环次数2次,吹扫时间 80 s, 其测试结果见图 4。当以 V(正己烷): V(丙 酮)=1:1和 V(苯):V(二氯甲烷)=1:1作为提取 剂时,各目标物质回收率均能达到70%以上,均 符合检测分析的要求。同时实验发现以 V(苯): V(二氯甲烷)=1:1作为提取剂时,在对一些带有 染料的布样进行萃取时,提取液会附着颜色。考 虑到可能原因是在萃取目标物质的同时连带样品 中的部分染料组分一并提取出来,为避免分析检 测时染料组分对目标物质产生的干扰,影响仪器 分析的准确度,实验最终选择 V(正己烷):V(丙 酮)=1:1作为提取剂。

图 4 不同萃取溶剂对 16 种多环芳烃 提取效率的影响 Fig.4 Effects of different extraction solvents on

extractionefficiency of 16 polycyclic aromatic hydrocarbons

2.2.2 加速溶剂萃取条件的选择与优化

影响加速溶剂萃取的主要因素有:萃取温度、 静态萃取时间、萃取剂体积、吹扫时间以及循环次 数,由于萃取池体积有限,故不考虑萃取溶剂体积 所产生的影响。由于影响因素较多,如果均采用 实验的方法依次验证,过程太过于繁琐,且需要耗 费大量的溶剂。因此,为保证实验的准确性,减少 实验量,本文将在正交实验单因素(萃取剂种类 型)基础上,以萃取温度(A)、静态萃取时间(B)、 循环次数(C)和吹扫时间(D)作为主要影响因 素,设计 L₉(3⁴)正交实验^[24],以苊、苯并[*a*]蔥、 苯并[*k*]荧蔥的回收率作为表征,对于实验数据 采用"综合评分法"^[24]进行统计分析,结果如 表3所示。

表3 正交实验设计及数据处理结果注

Tab.3 Orthogonal experimental design and

data processing results

사라다		影响	因素		回收 莱并[a]		苯并[<i>k</i>] 荧蒽回	测试指 标综合
编专	A∕°C	B∕min	C/次	D/s	~ 率/%	恩回收 率/%	收率/ %	评分 K/ %
1	85	2	1	80	37.6	39. 5	31.7	5.0
2	85	4	3	60	67.2	59.1	62.4	12.6
3	85	6	2	100	69.3	76.4	71.8	16.3
4	105	2	3	100	88.3	78.4	87.1	23.3
5	105	4	2	80	95.4	99.3	97.2	30.0
6	105	6	1	60	85.5	86.4	84.7	27.2
7	125	2	2	60	77.3	67.6	85.9	18.8
8	125	4	1	100	69.7	63.2	76.1	14.6
9	125	6	3	80	83.5	76.4	80.3	19.2
$\sum K_1$	33.9	47.1	46.8	54.2				
$\sum K_2$	80.5	57.2	55.1	58.6				
$\sum K_3$	52.6	62.7	65.1	54.2		<i>K</i> –	$\sum K/3$	
K_1	11.3	15.7	15.6	18.1		м _i –	$\sum K_i / S$	
K_2	26.8	19.1	18.4	19.5		$K = K_{i(M)}$	$(\mathbf{x}_{i}) - \mathbf{K}_{i(\mathbf{M})}$	in)
$\overline{K_3}$	17.5	20.9	21.7	18.1				
R	15.5	5.2	6.1	1.5				

注:A₁(萃取温度 85 ℃)、A₂(萃取温度 105 ℃)、A₃(萃取温 度 125 ℃);B₁(静态萃取时间 2 min)、B₂(静态萃取时间 4 min)、 B₂(静态萃取时间 6 min);C₁(循环次数 1 次)、C₂(循环次数 3 次)、C₃(循环次数 2 次);D₁(吹扫时间 80 s)、D₂(吹扫时间 60 s)、D₃(吹扫时间 100 s)。

通过对比表 3 中极差 R 值大小可知,影响加 速溶剂萃取效率大小的因素条件依次为 A>C>B> D。提高萃取温度,可以减弱目标物质与基体之 间的作用力,从而使目标物质从基体中被快速解 析出来并进入溶剂。由 R 值的大小分析来看,静 态萃取时间、循环次数对萃取效率的影响相当,如 果延长静态萃取时间可以适当减少循环次数,二 者可以理解为互补因素。氮气吹扫可以将萃取池 以及管道中残留的溶剂吹扫干净,实验通过延长 吹扫时间来对萃取效率进行分析,结果显示持续 延长吹扫时间对提取效率并无显著影响。因 此,为缩短萃取时间提高效率,实验选择氮气吹 扫时间为 80 s。

实验 5 测试指标综合评分为 30, 萃取效果最 好。同时,实验 6 的测试指标综合评分为 27.2, 为排除偶然因素的影响,实验进一步对两组仪器 条件分别做了 6 组平行验证实验。结果均表明, 实验 5 仪器条件要优于实验 6 的仪器条件,因此, 可以得出各影响因素的最优组合为 A₂、B₂、C₃、 D₁,由于静态萃取时间、循环次数为互补因素,实 验本着萃取过程的少量多次性,故将静态萃取时 间由 4 min 缩短为 2 min,循环次数由 2 次增加为 3 次。从而进一步得出新的最优实验条件为 A₂、 B₁、C₂、D₁,即萃取温度为 105 ℃,静态萃取时间 2 min,循环次数 3 次,吹扫时间 80 s,经测试验证 萃取效率得到了进一步的优化。

2.2.3 固相萃取条件的选择及优化

为考察不同固相萃取柱对样品提取液的富集 与净化效果,取4 mL 样品提取液分别过 500 mg/ 6 mL MIP-PAHs 固相萃取柱、Florisil 固相萃取柱、 C18 固相萃取柱,收集流出液,经 GC/MS 检测结 果表明,3 种固相萃取柱对样品提取液均能起到 良好的净化效果,其中 MIP-PAHs 固相萃取柱在 净化提取液的同时可对目标物质起到良好的富集 效果,回收率较好。

同时实验分别考察了以正己烷、二氯甲烷、甲 醇、乙酸乙酯、丙酮作为 MIP-PAHs 固相萃取柱洗 脱剂时对回收率的影响,选择用量均为 10 mL 结 果如图 5 所示。当以二氯甲烷作为洗脱剂时,除 苯并[*k*]荧蒽、苯并[*e*] 芘和二苯并[*a*,*h*] 蒽 3 种 物质的回收率比以甲醇作为洗脱剂时回收率低以 外,其他目标物质的萃取效率均高于另外 4 种溶 剂,且各目标物质回收率均符合分析检测的要求, 故实验最终选择以二氯甲烷作为洗脱剂。

图 5 不同洗脱溶剂对回收率的影响 Fig.5 Effect of different elution solvents on recovery

为确保固相萃取小柱上吸附的目标物质可以 被完全洗脱,实验又进一步考察了洗脱剂用量对 回收率的影响,以二氯甲烷作为洗脱剂,每2mL 用量收集一次,共收集 10次,分别计算每段流出 液中各目标物质的回收率。结果表明:当洗脱剂 用量达到 8 mL 时,各个目标物质的回收率为 74.7%~102.8%,再增加用量,各目标物质的回收 率均无明显增加,故实验选择洗脱剂理想用量为 8 mL。 2.3 标准曲线、线性范围、检出限和定量限 试验分别配制 0.1、0.2、0.5、1、2、5 mg/L 这 6个不同系列浓度的标准工作液,以标准工作液 的质量浓度作为 x,峰面积为 y,绘制标准工作曲 线,建立回归方程,计算相关系数(R²),结果见表 4。16种多环芳烃物质在线性范围 0.1~5 mg/L 线性关系良好, R² 在 0.993 2~0.999 8 之间。

表4 16 种多环芳烃的线性相关系数(R²)、

线性范围、检出限(LOD)和定量限(LOQ)

Tab.4 Linear correlation coefficient (R^2) , linear range, limit of detection (LOD) and limit of quantification (LOQ) of 16 polycyclic aromatic hydrocarbons

化合物	回归方程	相关 系数 <i>R</i> ²	线性 范囲/ LOD/ LOQ/ (mg・ (μg・ (μg・ (mg・ kg ⁻¹) kg ⁻¹)
萘	<i>y</i> =472 099 <i>x</i> -12 823	0.9998	0.1~5 1.13 4.52
苊烯	y = 557 737x - 59 100	0.9984	0.1~5 0.82 3.28
苊	y = 320 523x - 9 128	0.9998	0.1~5 1.29 5.16
芴	<i>y</i> =412 274 <i>x</i> -30 717	0.9995	0.1~5 0.88 3.52
菲	<i>y</i> =288 633 <i>x</i> -48 015	0.9970	0.1~5 1.13 4.52
蒽	y=286 538x-55 388	0.9963	0.1~5 0.95 3.80
苯并苊	<i>y</i> =588 707 <i>x</i> -66 336	0.998 8	0.1~5 1.67 6.68
芘	<i>y</i> =718 575 <i>x</i> -74 264	0.9992	0.1~5 0.92 3.68
1-甲基芘	<i>y</i> =347 821 <i>x</i> -52 755	0.9977	0.1~5 0.96 3.84
苯并[<i>a</i>]蔥	$y = 683 \ 005x - 131 \ 633$	0.9971	0.1~5 1.33 5.32
苯并[b]荧蔥	$y = 35 \ 026x - 74 \ 001$	0.9942	0.1~5 1.42 5.68
苯并[k]荧蒽	$y = 421 \ 065x + 13 \ 126$	0.9986	0.1~5 1.89 7.56
苯并[e]芘	y=232 403x-25 989	0.9993	0.1~5 1.72 6.88
苯并[<i>a</i>]芘	<i>y</i> =234 832 <i>x</i> -60 816	0.9932	0.1~5 1.95 7.80
茚并[1,2,3-cd]芘	y=383 088x-91 295	0.9941	0.1~5 1.49 5.96
二苯并[a,h]蔥	y=378 455x-78 522	0.9936	0.1~5 1.65 6.60

依据标准 HJ 168—2020《环境监测分析方法 标准制修订技术导则》[25]关于检出限的计算方 法,平行测定7次低浓度空白加标,计算各个目标 物质的检出限,并对结果进行验证。最终得出16 种多环芳烃检出限(LOD)为0.82~1.95 µg/kg, 以4倍的检出限来限定其定量限(LOQ)为3.28~ 7.80 μg/kg_o

2.4 加标回收率和精密度

取代表性纺织固体废物样品,分别选取 0.1、 2、5 mg/L 低中高 3 个浓度水平, 按 1.3、1.4 测试 条件,进行6平行加标回收测试,结果见表5。16 种多环芳烃日内平均回收率为 75.4%~103.3%, 日内相对标准偏差(RSD.n=6)为0.7%~8.2%; 日间平均回收率为73.7%~103.8%,日间相对标 准偏差(RSD, n=6)为1.4%~9.1%。

表 5 16 种多环芳烃的加标回收率和 相对标准偏差(RSD)

Tab.5 Standard addition recovery rate and relative

standard deviation (RSD) of 16 kinds of polycyclic

	aromatic h	(n=6)			
		日	内	日	间
化合物	添加水平/	回收	RSD/	回收	RSD/
	(mg・L ⁻¹)	率/%	%	率/%	%
萘	0. 1	80. 9	4. 1	82. 1	4.5
	2	79. 3	3. 7	79. 8	4.2
	5	77. 4	3. 1	77. 0	5.2
苊烯	0. 1	84. 1	3.0	84. 4	3.6
	2	81. 9	4.4	78. 5	4.3
	5	79. 1	5.5	80. 8	3.4
苊	0.1	94. 2	1.3	97. 0	2.4
	2	98. 7	1.9	97. 0	1.4
	5	92. 3	1.8	90. 0	3.1
芴	0. 1	101. 8	1.4	99. 7	2.5
	2	103. 3	0.7	102. 1	3.7
	5	99. 8	2.7	97. 5	7.6
菲	0. 1	85.4	4.2	82. 4	4. 2
	2	86.0	2.7	89. 8	2. 4
	5	87.2	4.3	84. 7	5. 9
茵	0. 1	86. 5	4.2	87.5	3.2
	2	90. 8	1.7	90.2	3.8
	5	85. 6	6.6	88.5	7.7
苯并苊	0. 1	80. 9	1.6	81. 2	7.7
	2	80. 3	2.4	80. 6	3.7
	5	79. 0	3.3	83. 3	5.6
芘	0.1	101. 7	1.4	100. 2	3.0
	2	100. 7	3.0	103. 8	3.1
	5	101. 9	1.8	101. 8	4.1
1-甲基芘	0.1	83. 1	5.0	83. 6	6.8
	2	86. 5	6.0	93. 5	7.1
	5	82. 3	4.5	79. 4	7.2
苯并[a]蔥	0.1	87. 0	4.5	85.3	9. 1
	2	87. 8	5.7	90.2	6. 6
	5	88. 3	7.3	90.9	6. 7
苯并[b]荧蒽	0.1	82. 9	4.3	83. 1	5.4
	2	81. 4	8.2	84. 3	4.9
	5	79. 5	2.6	82. 1	5.9
苯并[k]荧蒽	0.1	81. 1	4.3	82. 1	5.5
	2	77. 8	4.9	76. 4	6.2
	5	84. 9	8.0	81. 8	7.7
苯并[e]芘	0.1	85. 1	3.5	84. 4	5.0
	2	78. 5	2.8	81. 3	6.3
	5	83. 3	3.9	84. 7	4.8
苯并[a]芘	0.1	81. 0	6. 1	84. 8	5.3
	2	85. 9	4. 3	84. 1	6.5
	5	83. 6	3. 2	81. 1	6.6
茚并[1,2,3-cd]芘	0.1	79. 8	4.3	80. 7	4.4
	2	80. 1	7.6	80. 5	5.7
	5	78. 4	6.7	79. 5	5.2
二苯并[<i>a</i> , <i>h</i>]蔥	0. 1	78. 9	2.6	79. 1	6.4
	2	75. 7	6.3	73. 7	6.0
	5	75. 4	4.5	75. 1	5.6

2.5 与标准方法比较

将本文建立的方法分别与国家标准 GB/T 36488—2018《涂料中多环芳烃的测定》^[26]、GB 5009.265-2016《食品安全国家标准 食品中多环 芳烃的测定》^[27]、行业标准 GB/T 28189—2011 《纺织品 多环芳烃的测定》^[28]、环境标准 HJ 784—2016《土壤和沉积物多环芳烃的测定 高效 液相色谱法》^[29]进行对比,结果见表 6。通过对 萃取剂用量、萃取时间、检出限、相对标准偏差及 回收率的对比发现,该方法(ASE-SPE-GC/MS)具 有溶剂用量少、萃取时间短、灵敏度高、精确度好 等优点。

Tab.6 Comparison of different methods								
方法名称	前处理方法	萃取剂	萃取剂 用量/mL	萃取 时间/h	检测 仪器	检出限/ (µg•kg ⁻¹)	RSD/ %	回收率/ %
GB/T 36488—2018 ^[26]	超声波萃取	正己烷	25	1	GC/MS	100	<10	_
GB 5009. 265—2016 ^[27]	超声波萃取	正己烷、乙腈	26	1.3	HPLC	0.33~2.0	<20	—
GB/T 28189—2011 ^[28]	超声波萃取	V(正己烷):V(丙酮)=1:1	72	1	GC/MSD	100	2.4~10.3	61.1~111.7
HJ 784—2016 ^[29]	索氏提取	V(丙酮):V(正己烷)=1:1	100	16~18	HPLC	3~20	4.3~15	57.4~99.5
ASE-SPE-GC/MS	加速溶剂-固相萃取	V(丙酮):V(正己烷)=1:1	15~20	0.25	GC/MS	0.82~1.95	0.7~8.2	75.4~103.3

表 6 不同方法的比较 **ab.6** Comparison of different method

2.6 方法应用

应用本文建立的方法对市场委托和进口报检的 100 批样品进行测定,结果见表 7。除萘、苊烯、苯并苊、芘、苯并[e]芘、二苯并[a,h] 葱 6 种物质未被检出外,其他 10 种物质在 100 批纺织固体废物样品中均有不同程度的被检出,其中被检出苊含量为 7.64~36.43 µg/kg,芴含量为 13.57~29.48 µg/kg,菲含量为 17.62~27.68 µg/kg,蔥含量为 49.45 µg/kg,1-甲基芘含量为 14.38 µg/kg,苯并[a] 蔥含量为 9.67~25.86 µg/kg,苯并[b] 荧蔥含量为 17.62~44.57 µg/kg,苯并[k] 荧蔥含量为 18.37~76.82 µg/kg,苯并[a] 芘含量

表7 实际样品测定

Tab.7Measurement of actual samples(n=6)

化合物	废棉	废涤棉 涂层面料	废聚酯 面料	废棉 纱线	废牛仔 面料		
萘	ND	ND	ND	ND	ND		
苊烯	ND	ND	ND	ND	ND		
苊	ND	36.43	44. 70	ND	7.64		
芴	19.86	ND	13.57	29.48	ND		
菲	ND	27.68	17.62	ND	ND		
蒽	ND	49.45	ND	ND	ND		
苯并苊	ND	ND	ND	ND	ND		
芘	ND	ND	ND	ND	ND		
1-甲基芘	ND	ND	ND	ND	14.38		
苯并[a] 蔥	9.67	25.86	ND	17.63	ND		
苯并[b]荧蒽	ND	44. 57	ND	ND	17.62		
苯并[k]荧蒽	ND	18.37	ND	ND	76.82		
苯并[e]芘	ND	ND	ND	ND	ND		
苯并[a]芘	34.78	ND	25.67	78.94	ND		
茚并[1,2,3-cd]芘	ND	9.70	ND	ND	11.45		
二苯并[a,h]蒽	ND	ND	ND	ND	ND		

为 25.67~78.94 µg/kg, 茚并[1,2,3-cd] 芘含量 为 9.70~11.45 µg/kg。

3 结论

本文采用加速溶剂萃取-固相萃取净化前处 理方法,对纺织固体废物中 16 种 PAHs 进行提 取,以 V(丙酮):V(正己烷)=1:1作为萃取剂,设 计单因素 L₉(3⁴)正交实验,对加速溶剂萃取条件 进行优化,同时采用 MIP-PAHs 固相萃取柱进一 步对提取液进行净化和富集目标物质,有效降低 了基体中未知组分和杂质的干扰。在 SIM 扫描 模式下,采用 HP-5MS 毛细管色谱柱对目标物质 拥有良好的分离效果,经 GC/MS 测试验证,16 种 PAHs 色谱峰型良好,且无杂质峰的产生。目前, 对于 PAHs 的测定,在纺织固废领域涉及相对较 少,因此建立该方法在针对纺织固体废物中 PAHs 的测定可提供一定的参考价值。

参考文献:

- [1]谭新来,武英欣,黄跟平,等.多环芳烃和多氯联苯全 球芯样沉积记录研究及现状综述[J].化学试剂, 2023,45(6):11-19.
- [2] NING X A, LIN M Q, SHEN L Z, et al. Levels, composition profiles and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sludge from ten textile dyeing plants[J]. Environ. Res., 2014, 132:112-118.
- [3] YAN Z S, ZHANG H C, WU H F, et al. Occurrence and removal of polycyclic aromatic hydrocarbons in real textile dyeing wastewater treatment process [J]. *Desalin. Water Treat.*, 2016, 57(47):22 564-22 572.
- [4] JARVIS I W H, DREIJ K, MATTSSON A, et al. Interactions between polycyclic aromatic hydrocarbons in com-

plex mixtures and implications for cancer risk assessment [J]. *Toxicology*, 2014, **321**:27-39.

- [5] BELO R F C, NUNES C M, DOS S E V, et al.Single laboratory validation of a SPE method for the determination of PAHs in edible oils by GC-MS[J].Anal. Methods, 2012, 4(12):4 068-4 076.
- [6] 王超, 黄肇章, 邢占磊, 等. 在线固相萃取-液相色谱法 直接测定水中超痕量多环芳烃 [J]. 色谱, 2019, 37(2):239-245.
- [7]潘晓玉,王宗义,赵逸涵,等.冷冻脱脂-分散固相萃取/ 气相色谱-串联质谱法检测食用植物油中4种多环芳 烃[J].分析试验室,2022,41(4):419-423.
- [8] AGUINAGA N, CAMPILLO N, VINAS P, et al. A headspace solid-phase microextraction procedure coupled with gas chromatography-mass spectrometry for the analysis of volatile polycyclic aromatic hydrocarbons in milk samples [J].Anal.Bioanal.Chem., 2008, 391(3):753-758.
- [9] ZHANG J H, ZOU H Y, NING X A, et al. Combined ultrasound with Fenton treatment for the degradation of carcinogenic polycyclic aromatic hydrocarbons in textile dying sludge [J]. Environ. Geochem. Hlth., 2018, 40(5): 1 867-1 876.
- [10]陶鑫,全洗强,俞建国,等.加速溶剂萃取-旋蒸定容-高效液相色谱法检测土壤中 16 种多环芳烃[J].环 境化学,2019,38(12):2 797-2 807.
- [11]王道玮,赵世民,金伟,等.加速溶剂萃取-固相萃取净 化-气相色谱/质谱法测定沉积物中多氯联苯和多环 芳烃[J].分析化学,2013,41(6):861-868.
- [12] JOUYBAN A, FARAJZADEH M A, MOGADDAM M R A, et al. Ferrofluid-based dispersive liquid-liquid microextraction using a deep eutectic solvent as a support: Applications in the analysis of polycyclic aromatic hydrocarbons in grilled meats [J]. Anal. Methods, 2020, 12(11):1522-1531.
- [13]付慧,陆一夫,胡小键,等.液液萃取-高分辨气相色 谱-高分辨双聚焦磁质谱法测定尿中羟基多环芳烃 代谢物[J].色谱,2020,38(6):715-721.
- [14]陈鑫,刘军,沈菁,等.QuEChERS-高效液相色谱法测 定莲藕中 15 种多环芳烃[J].分析试验室,2022, 41(9):1 047-1 053.
- [15] OLATUNJI O S, FATOKI O S, OPEOLU B O, et al. Determination of polycyclic aromatic hydrocarbons [PAHs] in processed meat products using gas chromatography-flame ionization detector [J]. Food Chem., 2014,156:296-300.
- [16]丁枫芸,马洁清,陶艳侠,等.气相色谱-串联质谱法测 定塑料菜板中的多环芳烃[J].塑料科技,2019,

47(**2**):73-76.

- [17] 王传咪, 谭华东, 武春媛, 等. QuEChERS-分散液液微 萃取结合 GC-MS 测定土壤中的多环芳烃残留[J].化 学试剂, 2022, 44(5): 755-761.
- [18] BALLESTERO E, SANCHEZ A G, MARTOS N R.Simultaneous multidetermination of residues of pesticides and polycyclic aromatic hydrocarbons in olive and olivepomace oils by gas chromatography/tandem mass spectrometry[J].J.Chromatogr.A, 2006, 1 111(1):89-96.
- [19]谭华东,张汇杰,武春媛.GC-MS 结合微量 QuEChERS 法快速测定土壤中 16 种多环芳烃[J].中国测试, 2020,46(1):64-70.
- [20] CAMARGO M C R, ANTONIOLLI P R, VICENTE E. HPLC-FLD simultaneous determination of 13 polycyclic aromatic hydrocarbons : Validation of an analytical procedure for soybean oils [J]. J. Brazil. Chem. Soc., 2011, 22(7) : 1 354-1 361.
- [21]章再婷,杨燕,王永健,等.专一性酶解-高效液相色 谱-荧光检测法测定3种食用油中4种多环芳烃[J]. 理化检验(化学分册),2020,56(6):713-718.
- [22] 王峰,张志杰,林慧,等.高效液相色谱-二极管阵列检测器-荧光检测器法测定植物油中的18种多环芳烃
 [J].食品科学,2014,35(6):142-145.
- [23] GU H W, ZHANG S H, WU B C, et al. A green chemometrics-assisted fluorimetric detection method for the direct and simultaneous determination of six polycyclic aromatic hydrocarbons in oil-field wastewaters[J].Spectrochim.Acta A, 2018, 200:93-101.
- [24] JIN L C. Orthogonal design and multi-index analysis [M].Beijing:China Railway Press, 1988:41-97.
- [25]生态环境部.环境监测分析方法标准制订技术导则: HJ 168—2020[S].北京:中国环境出版社,2020-12-29.
- [26] 国家市场监督管理总局,中国国家标准化管理委员 会.涂料中多环芳烃的测定:GB/T 36488—2018[S]. 北京:中国标准出版社,2018-07-13.
- [27]中华人民共和国国家卫生和计划生育委员会,国家 食品药品监督管理总局.食品安全国家标准 食品中 多环芳烃的测定:GB 5009.265—2016[S].北京:中国 标准出版社,2016-12-23.
- [28]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.纺织品多环芳烃的测定:
 GB/T 28189—2011[S].北京:中国标准出版社,2011-12-23.
- [29]环境保护部.土壤和沉积物 多环芳烃的测定高效液 相色谱法:HJ 784—2016[S].北京:中国环境出版社, 2016-02-01.